
T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E W W W . S Y S - C O N . C O M / J D J

RETAILERS PLEASE DISPLAY
UNTIL FEBRUARY 28, 2005

DECEMBER 2004 VOLUME:9 ISSUE:12

PERSONALIZE
YOUR WEB
APPLICATIONS

PLUS...
Understanding
Portals and Portlets
Using JAXB in J2EE-Based
Enterprise Applications

Using
JNDI...

Moving to a
Cluster...

Developer Testing
Is ‘In’

Providing a Complete
Data Services Layer

No. 1 i-Technology Magazine in the World

PAGE 58–59
February 15-17, 2005

Hynes Convention Center
Boston, MA

• Join Over 3,000 Developers
• App Server Shoot-Out!
 • FREE J2EE Tutorial
 • JDJ Partner Pavilion
 • Seminars and Case Studies

$1,000,000
Software Giveaway

J2EE IN THE ENTERPRISE MARKET

Reusable components can eliminate personalization code from your applications

</portlet>

</fragment>

</portlet>

</fragment>

3December 2004www.SYS-CON.com/JDJwww.SYS-CON.com/JDJ

ur search for the Twenty Top
Software People in the World is
nearing completion. In the JDJ
tradition of empowering readers,

we will leave the final “cut” to you, but here
– in the meantime – are the top 40 nomina-
tions. More details on each nominee can be
viewed online at www.sys-con.com/java.
 In alphabetical order the nominees are:
• Tim Berners-Lee: “Father of the World

Wide Web” and expectant father of the
Semantic Web

• Joshua Bloch: Formerly at Sun, where
he helped architect Java’s core platform;
now at Google

• Grady Booch: One of the original devel-
opers of the Unified Modeling Language

• Adam Bosworth: Famous for Quattro
Pro, Microsoft Access, and IE4; then BEA,
now Google

• Don Box: Coauthor of SOAP
• Stewart Brand: Cofounder in 1985 of the

WELL bulletin board
• Tim Bray: One of the prime movers of

XML, now with Sun
• Dan Bricklin: Cocreator of VisiCalc, the

first PC spreadsheet
• Larry Brilliant: Cofounder in 1985 of the

WELL bulletin board
• Sergey Brin: Son-of-college-math-profes-

sor turned cofounder of Google, Inc.
• Dave Cutler: The brains behind VMS;

hired away by Microsoft for Windows NT
• Don Ferguson: Inventor of the J2EE

application server at IBM
• Roy T. Fielding: Primary architect of

HTTP 1.1 and a founder of the Apache
Web server

• Bob Frankston: Cocreator of VisiCalc, the
first PC spreadsheet

• Jon Gay: The “Father of Flash”
• James Gosling: “Father of Java” (though

not its sole parent)
• Anders Hejlsberg: Genius behind the

Turbo Pascal compiler, subsequently
“Father of C#”

• Daniel W. Hillis: VP of R&D at the Walt
Disney Company; cofounder, Think
Machines

• Miguel de Icaza: Now with Novell,
cofounder of Ximian

• Martin Fowler: Famous for work on
refactoring, XP, and UML

• Bill Joy: Cofounder and former chief
scientist of Sun; main author of Berkeley
Unix

• Mitch Kapor: Designer of Lotus 1-
2-3, founder of Lotus Development
Corporation

• Brian Kernighan: One of the creators of
the AWK and AMPL languages

• Mitchell Kertzman: Former programmer,
founder, and CEO of Powersoft (later
Sybase)

• Klaus Knopper: Prime mover of Knoppix,
a Linux distro that runs directly from a
CD

• Craig McClannahan: Of Tomcat, Struts,
and JSF fame

• Nathan Myhrvold: Theoretical and
mathematical physicist, former CTO at
Microsoft

• Tim O’Reilly: Publisher, open source
advocate; believer that great technology
needs great books

• Jean Paoli: One of the cocreators of the
XML 1.0 standard with the W3C; now
with Microsoft

• John Patrick: Former VP of Internet tech-
nology at IBM, now “e-tired”

• Rob Pike: An early developer of Unix and
windowing system (GUI) technology

• Dennis Ritchie: Coinventor of Unix
• Richard Stallman: Free software move-

ment’s leading figure; founder of the
GNU Project

• Bjarne Stroustrup: The designer and
original implementor of C++

• Andy Tanenbaum: Professor of com-
puter science, author of Minix

• Ken Thompson: Coinventor of Unix
• Linus Torvalds: “Benevolent dictator” of

the Linux kernel
• Alan Turing: Mathematician; author of

the 1950 paper “Computing Machinery
and Intelligence”

• Guido van Rossum: Author of the Python
programming language

• Ann Winblad: Former program-
mer, cofounder of Hummer Winblad
Venturee Partners

 Do come and vote online, and we’ll bring
you the full results – and additional com-
ments on the nominations – in our January
2005 issue.

From the Group Publisher

The i-Technology
Right Stuff

 Editorial Board
 Desktop Java Editor: Joe Winchester
 Core and Internals Editor: Calvin Austin
 Contributing Editor: Ajit Sagar
 Contributing Editor: Yakov Fain
 Contributing Editor: Bill Roth
 Contributing Editor: Bill Dudney
 Contributing Editor: Michael Yuan
 Founding Editor: Sean Rhody

Production
 Production Consultant: Jim Morgan
 Associate Art Director: Tami Beatty-Lima
 Executive Editor: Nancy Valentine
 Associate Editors: Jamie Matusow
 Gail Schultz
 Assistant Editor: Natalie Charters
 Online Editor: Martin Wezdecki
 Research Editor: Bahadir Karuv, PhD

Writers in This Issue
Calvin Austin, Bill Burke, Keith Donald,

Bill Dudney, Jeremy Geelan, Onno Kluyt,
Tilak Mitra, David Purcell, Ken Ramirez,

Thomas Smits, Rost Vashevnik,
Daniel Vlad, Coach K. Wei, Joe Winchester

To submit a proposal for an article, go to
http://grids.sys-con.com/proposal

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage

rates are paid at Montvale, NJ 07645 and additional mailing
offices. Postmaster: Send address changes to: Java Developer’s
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road,

Montvale, NJ 07645.

©Copyright
Copyright © 2004 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Kristin Kuhnle, kristin@sys-con.com. SYS-CON Media and
SYS-CON Publications, Inc., reserve the right to revise, republish and

authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

For List Rental Information:
Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com
Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant
Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

Jeremy Geelan is

group publisher of

SYS-CON Media, and

is responsible for the

development of new

titles and technology

portals for the

firm. He regularly

represents SYS-CON at

conferences and trade

shows, speaking to

technology audiences

both in North America

and overseas.

jeremy@sys-con.com

Jeremy Geelan

O

Reusable components can eliminate

personalization code from your applications

5December 2004www.SYS-CON.com/JDJ

DECEMBER 2004 VOLUME:9 ISSUE:12

contents
JDJ Cover Story

34

An Interview with Dennis Leung
VP of Oracle App Server, TopLink Development

Interview by Jeremy Geelan

50

JDJ (ISSN#1087-6944) is published monthly (12 times a year) for $69.99 by
SYS-CON Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.
Periodicals postage rates are paid at Montvale, NJ 07645 and additional
mailing offi ces. Postmaster: Send address changes to: JDJ, SYS-CON
Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.

Features

FROM THE GROUP PUBLISHER

The i-Technology Right Stuff
by Jeremy Geelan.................................3

VIEWPOINT

J2EE: A Standard in Jeopardy?
by Keith Donald.................................6

SPECIFICATION

EJB 3.0 Preview
Part 2: The advanced features
by Bill Burke.................................8

PORTLET SPECIFICATION

Understanding
Portals and Portlets
Part 2: A real-world implementation
by Ken Ramirez.................................12

DESKTOP JAVA VIEWPOINT

Sticks and Stones
by Joe Winchester.................................48

VIRTUAL MACHINES

Unbreakable Java
A Java server that never goes down
by Thomas Smits.................................54

JSR WATCH

From Within the Java Community
Process Program
The votes are in
by Onno Kluyt.................................60

@ THE BACKPAGE

Why Web Applications Can be
Problematic and Unreliable
by Coach K. Wei.................................62

JAVA & XML

Using JAXB J2EE-Based
Enterprise Applications
Part 2: Narrowing the bridge between
XML and Java
by Tilak Mitra.................................20

SYSTEM DESIGN

Using JNDI...
...to build fl exible, technology-independent
enterprise systems
by Rost Vashevnik.................................28

CORE AND INTERNALS VIEWPOINT

Under the Hood of a
J2EE Application Server
by Calvin Austin.................................42

Q&A

Developer Testing Is ‘In’
An interview with Alberto Savoia and Kent Beck
Interview by Bill Dudney.................................44

by Daniel Vlad
Moving to a Cluster...

by David Purcell

24

Personalize
Your Web
Applications

Reusable components can eliminate

personalization code from your applications

www.SYS-CON.com/JDJ6 December 2004

y now you’ve probably either heard
about or read the analyst report
from the Burton Group entitled
“J2EE in Jeopardy.”

 In summary, the claim is J2EE as a stan-
dard is in danger due to several market
forces:
1. Market commoditization: Open

source players like Apache, JBoss, and
ObjectWeb are commoditizing the plat-
form, making it harder for vendors to
profit from J2EE server licenses. If ven-
dors can’t make money on J2EE, they
won’t want to continue to invest in the
specification.

2. “Disruptive” technologies:
In the last year the com-
plexity of J2EE’s program-
ming model – EJB – has
been challenged. Simpler,
more productive models
have emerged from within
the open source commu-
nity and have garnered
widespread acceptance
in a short time. Credited
innovators here include
the Spring Framework and
Hibernate ORM.

 The report goes on to make
recommendations to miti-
gate risks for end users and
vendors alike. In summary:
1. End users should turn over

responsibility for generic
J2EE infrastructure to
proven providers in the
open source world. You
shouldn’t abandon J2EE,
but should consider some
of the “alternative” frame-
works in the open source community.

2. Vendors should focus on building a
“J2EE super platform.” Basically, inno-
vate in areas where open source hasn’t
already preempted competition through
commoditization.

 As a Spring Framework user/developer
and a strong believer in our value proposi-
tion and development philosophy, I

came away from all of this with mixed
feelings.
 On the one hand, it’s great to see the
work of the Spring, Hibernate, Apache,
and other quality open source teams get-
ting endorsement and credibility. The cat
is out of the proverbial bag: open source is
a force of innovation to be respected and
certainly not underestimated. Outsourcing
infrastructure to proven open source pro-
viders is a very effective strategy for com-
panies looking to deliver working software
better/faster/cheaper. Complimenting
quality open source offerings with stra-

tegic commercial products and
services is an effective model for
infrastructure providers looking
to further penetrate the market.
 On the other hand, I feel the
casual reader might come away
with a bad spin on what’s hap-
pening here. I can see it
now – a corporate manager faced
with a major technology invest-
ment decision happens across
this article (or others like it)
and concludes J2EE is in chaos.
Or worse, concludes the open
source community is out build-
ing flavor-of-the-month “alterna-
tive frameworks” that “reinvent
the wheel” because the “stan-
dard” platform doesn’t cut it. Not
exactly the impression we want
to make to grow the enterprise
Java market.
 This is where our community
must step in and set that manag-
er straight. J2EE is not in a state
of chaos. There are simply more
good choices for J2EE infrastruc-
ture than ever before. And

from what I’ve experienced, there are
many more J2EE success stories. Second,
these “alternative” frameworks abso-
lutely do not “reinvent the wheel in open
source.” They all build on standard J2EE
services to improve developer produc-
tivity; they are not replacements for the
platform.

– continued on page 57

Viewpoint

Keith Donald

J2EE: A Standard
in Jeopardy?

B

Keith Donald is a

software consultant,

mentor, and Java

application developer

for Interface21, Limited.

He’s been a believer in

The Spring Framework

since he started

leveraging it in real

projects in July 2003.

keith@
interface21.com

President and CEO:
 Fuat Kircaali fuat@sys-con.com

Vice President, Business Development:
 Grisha Davida grisha@sys-con.com

Group Publisher:
 Jeremy Geelan jeremy@sys-con.com

Advertising
Senior Vice President, Sales and Marketing:

 Carmen Gonzalez carmen@sys-con.com
Vice President, Sales and Marketing:

 Miles Silverman miles@sys-con.com
Advertising Sales Director:

 Robyn Forma robyn@sys-con.com
National Sales and Marketing Manager:

 Dennis Leevey dennis@sys-con.com
Advertising Sales Manager:

 Megan Mussa megan@sys-con.com
Associate Sales Managers:

 Kristin Kuhnle kristin@sys-con.com
 Dorothy Gil dorothy@sys-con.com
 Kim Hughes kim@sys-con.com

Editorial
Executive Editor:

 Nancy Valentine nancy@sys-con.com
Associate Editors:

 Jamie Matusow jamie@sys-con.com
 Gail Schultz gail@sys-con.com

Assistant Editor:
 Natalie Charters natalie@sys-con.com

Online Editor:
 Martin Wezdecki martin@sys-con.com

Production
Production Consultant:

 Jim Morgan jim@sys-con.com
Lead Designer:

 Tami Beatty-Lima tami@sys-con.com
Art Director:

 Alex Botero alex@sys-con.com
Associate Art Directors:

 Abraham Addo abraham@sys-con.com
 Louis F. Cuffari louis@sys-con.com
 Richard Silverberg richards@sys-con.com

Assistant Art Director:
 Andrea Boden andrea@sys-con.com

Web Services
Information Systems Consultant:

 Robert Diamond robert@sys-con.com
Web Designers:

 Stephen Kilmurray stephen@sys-con.com
 Matthew Pollotta matthew@sys-con.com

Accounting
Financial Analyst:

 Joan LaRose joan@sys-con.com
Accounts Payable:

 Betty White betty@sys-con.com

SYS-CON Events
President, SYS-CON Events:

 Grisha Davida grisha@sys-con.com
National Sales Manager:

 Jim Hanchrow jimh@sys-con.com

Customer Relations
Circulation Service Coordinators:

 Edna Earle Russell edna@sys-con.com
 Linda Lipton linda@sys-con.com
 Monique Floyd monique@sys-con.com

JDJ Store Manager:
 Brunilda Staropoli bruni@sys-con.com

���
���

��������������������������������������

��������������
���������������������

�������������

������������������������������������

��

��

�������������������������������������
���

��
��
����������������������������������

�
������������������������������

��
��
���

��������������������������������������

4 ��
��

4 ��
���
���������������������������

4 ��
��
���������������������

4 ��

��
������������������������������������

������������������������������������� ���������������������

���
���

��������������������������������������

��������������
���������������������

�������������

������������������������������������

��

��

�������������������������������������
���

��
��
����������������������������������

�
������������������������������

��
��
���

��������������������������������������

4 ��
��

4 ��
���
���������������������������

4 ��
��
���������������������

4 ��

��
������������������������������������

������������������������������������� ���������������������

www.SYS-CON.com/JDJ8 December 2004

ast month’s article on EJB
3.0 (Vol. 9, issue 11) focused
primarily on the basic features
of the specification. Part 2 dives

much deeper into the specification
to talk about more advanced features
like dependency injection, depen-
dent objects, secondary tables, and
inheritance.

Dependency Injection
 Dependency injection is the op-
posite of jndiContext.lookup().
The idea of dependency injection
is that objects and services specify
which resources and configura-
tion values they require,
and their container au-
tomagically injects
these values. Dependen-
cy injection is supported
for any session bean
type and will also be
supported in the greater
J2EE specification in
items such as servlets.
This approach requires
no JNDI lookup at all and
can greatly simplify code.
Let’s look at an example.

@Stateful

public class ShoppingCartBean implements

ShoppingCart

{

 @Inject private UserTransaction userTx;

 @Inject private EntityManager entity-

Manager;

 private Petstore store;

 @EJB(name="petstore") public void

setPetstore(Petstore store) {

 this.store = store;

 }

 When an instance of Shop-
pingCartBean is allocated, the EJB
container will look up the UserTrans-
action service and set the userTx vari-
able. It will also get a reference to the
EJB whose ejbName is “petstore” and
call the setPetstore() method. Values
can be injected either with an explicit
field set or by calling a setter method.
A great side effect of injection is that
it becomes possible to test beans
outside the context of a container.

@Resource is another annotation for
injecting things like DataSources and
JMS connections.

Dependent Objects
 The EJB 3.0 specification defines
a full object/relational mapping for
dependent value classes. You can
map the properties of an aggregated
value object in your entity to specific

columns of the entity’s table.

@DependentObject(access=AccessType.PROPERTY)

public class Address implements java.

io.Serializable {

 private String street;

 private String state;

 private String city;

 public String getState() { return state;

}

…

}

 Your dependent value class can
either have its properties
defined as get/set methods
or directly as fields. Next,
define the mapping of a
@DependentObject within
your entity bean (see Listing
1).

Multi-Table Mappings
 Many application
developers find it neces-
sary to map an entity bean
to multiple tables within a
database, especially when
they have to map objects to
a legacy data schema. EJB

3.0 provides mappings for this using
the @SecondaryTable annotation.

@Entity

@SecondaryTable(name=”ADDRESS”, join={@Join

Column(name=”address_id”)})

public class Customer {

…

 @Column(name = "street", secondaryTable

= "ADDRESS")

Specification

by Bill Burke
EJB 3.0 Preview

L

Bill Burke is chief architect of

JBoss Inc., member of the EJB3

expert group, and co-author

of the JBoss 4.0 Workbook
 in O’Reilly’s Enterprise

JavaBeans, 4th Edition.

bill@jboss.org

The advanced features Part 2

The EJB 3.0 specification defines a full object/relational mapping
for dependent value classes”“

www.SYS-CON.com/JDJ10 December 2004

 Specification

 public String getStreet()

 {

 return street;

 }

…

 The @SecondaryTable is defined as
a class annotation and specifies the
table’s name as well as the columns
to use to join the main and subtable
together. The @JoinColumns of the
secondary table must map directly to
the primary key of the entity.
 To map a specific property to the

secondary table, specify the seconda-
ryTable annotation member value
from the @Column annotation.

Entity Inheritance
 Another missing feature in EJB 2.1
is the ability to support inheritance
and map a complex class hierarchy to
a relational database. EJB 3.0 supports
inheritance and polymorphic queries.
Three types of inheritance mapping
strategies are supported: one table
per class hierarchy (SINGLE_TABLE),
a join table per subclass (JOINED),
and a distinct table per class (TABLE_
PER_CLASS). Only SINGLE_TABLE is
required by the EJB 3.0 specification, so
we’ll focus on an example covering that.

SINGLE_TABLE Strategy
 The SINGLE_TABLE specifies
that there should be one and only
one table per class hierarchy. This
table should have a column for each
unique field for every class in the
hierarchy. The table must have an
additional column that identifies
the object’s type. By default, its type
is a string with the default value be-
ing the fully qualified class name of
the object stored. The @Discrimina-
torColumn maps the object identity
to a specific database column. The

SINGLE_TABLE strategy is the opti-
mal strategy for performance as
the persistence engine doesn’t have
to do any complex joins when load-
ing such an object. For example,
say we have an Animal superclass
entity bean, and a Dog subclass.
The Java code would look like
Listing 2.
 The table mapping would be one
gigantic table:

create table Animal (

ID Number,

TYPE varchar(255),

AVG_WEIGHT Number,

BREED varchar(255)

);

 All entities that subclass from Ani-
mal can be queried polymorphically:

Query query = entityManager.

createQuery("from Animal a where

a.averageWeight > 10");

 This query could return an
instance of a Dog, Cat, Elephant,
whatever entities that are currently
defined in the Animal hierarchy.

Finally Usable
 EJB 3.0 finally makes EJB persis-
tence a reality. With EJB 2.1 entities
you continually had to escape to di-
rect JDBC, rely on vendor proprietary
extensions, or move to an entirely
different object/relational mapping
strategy altogether. Features such as
a full object relation mapping includ-
ing a fully featured query language,
inheritance, secondary tables, and
dependent objects finally make the
EJB specification.
 With the use of annotations, XML
deployment descriptors that have
long been the bane of EJB develop-
ers can be completely removed if so
desired by the developer.
 All in all, EJB has come a long way
since the 1.0 days and is morphing
itself to the specifications of the com-
munity for which it was written.

References
• JSR 220: Enterprise JavaBeans 3.0:

www.jcp.org/en/jsr/detail?id=220
• JBoss, EJB 3.0: www.jboss.org/ejb3

EJB has come a long way since the 1.0 days”“

Listing 1
@Entity

public class Customer {

 private Address address;

…

 @Dependent({

 @DependentAttribute(name=“street”, column={@Co

lumn(“STREET”)}),

 @DependentAttribute(name=“city”, column={@Col

umn(“CITY”)}),

 @DependentAttribute(name=“state”, column={@Co

lumn(“STATE”)})

 })

 public Address getAddress() { return address; }

…

}

Listing 2
@Entity

@Table(name="Animal")

@Inheritance(strategy=InheritanceType.SINGLE_TABLE)

@DiscriminatorColumn(name="TYPE")

public class Animal

{

 @Id private int id;

 @Column(name="AVG_WEIGHT")

 private int averageWeight;

...

}

@Entity

public class Dog extends Animal

{

 @Column(name="BREED")

 private String breed;

...

}

���

���

�������������� ��

���

�� ����������������������

���������������
�����������������
�������������
�� ����������������
�� �� ��������������

� ��

���

���

�������������� ��

���

�� ����������������������

���������������
�����������������
�������������
�� ����������������
�� �� ��������������

� ��

www.SYS-CON.com/JDJ12 December 2004

n the November issue of JDJ (Vol.
9, issue 11) I explained the theory
behind the JSR 168 (Portlet Specifica-
tion) from an academic perspective.

The specification provides the infrastruc-
ture, classes, interfaces, and JSP tags for
building applications that can be pieced
together from a handful of off-the-shelf
or custom portlets. This time around, I
provide you with a real-world implemen-
tation that utilizes the knowledge you
picked up from Part 1 of this series.
 Along the way, you’ll learn how to
properly install Pluto (the Portlet Refer-
ence Implementation you can use to
test your portlets) and learn about some
pretty cool tools as well.

A Quick Refresher
 Last month, we learned that portlets
are similar to servlets, except they aren’t
allowed to use several HTML control tags
such as the <body> tag. This is because
the portal page provides these controlling
tags, whereas the portlets provide the tags
necessary to complete their own work.
 Portlets also share the application
context with servlets and JSPs and can
even include the output of another serv-
let or JSP as part of their content. To offer
the user the ability to customize portlets,
there are special Window States (such
as normal, minimized, and maximized)
and Portlet Modes (such as Edit, View,
Help) that can be controlled by the end
user. Furthermore, the portlet can use
these states and modes to determine
what content it needs to show the user
at any given point. User’s actions are
received within a portlet in the form
of both action and render methods.
Action methods respond to the user’s
interaction with the portlet, and render
methods are called to paint the output of
the portlet.
 Later in this article, we’ll see how we
can put all of these features and settings
to use in our example portlet. However,

before we can dive into the code, we
need to ensure that our environment is
ready to test a portal page and its con-
tained portlets.

Required Downloads
 Given the fact that Pluto is very
Mavenized these days, you’ll need to
download Maven (a tool that allows you
to build and deploy your project based
on a Project file). In addition, you’ll need
a servlet engine to run Pluto (since Pluto
runs as a servlet). I suggest Tomcat (pref-
erably version 5) as the servlet engine.
 If you’re developing on a Windows
machine, the Tomcat setup is pretty easy.
I downloaded Tomcat from the Apache
Web site using http://jakarta.apache.
org/tomcat/.
 Make sure you extract the Tomcat
binaries into its own directory and be
sure you have the JAVA_HOME environ-
ment variable pointing to your Java
installation directory path. Once Tomcat
is installed, try your hand at Maven.
Download and install Maven from the
Apache Web site as well.
 Define an environment variable
named MAVEN_HOME and point it to
the Maven root directory. You may also
want to add Maven’s bin directory to

your path, so you can easily execute
Maven from any command prompt
window in any directory. If all goes
well, you should be able to run Maven
with the –v option to view its version
information.
 Finally, it’s time to locate and down-
load Pluto. At the time of this writing, the
latest version of Pluto is 1.0.1, and is in
a Subversion Source Code Management
(SCM) system. If you visit http://cvs.
apache.org/viewcvs.cgi/portals/pluto/
trunk/?root=Apache-SVN, you’ll find the
trunk.
 You can either use the Web interface
to surf each package and download
them directly (which is very cumber-
some), or you can download and use
Tortoise for Subversion, which adds
context options to Windows Explorer
in order to assist you in download-
ing content from various Subversion
repositories across the Internet. The
Tortoise installation and documenta-
tion is located at http://tortoisesvn.
tigris.org.
 Tortoise provided Windows Explorer
with new context menu items as shown
in Figure 1.
 Next, you’ll need to create a new di-
rectory and download Pluto. Right-click
in the newly created directory while in
Windows Explorer to bring up the con-
text menu and select the option marked
“Checkout…”. You’ll need to specify the
complete path to the Subversion reposi-
tory, which is mentioned on the Apache.
org Web site as follows http://svn.
apache.org/repos/asf/.
 A Subversion repository is similar to
CVS, but provides added features and is
becoming extremely popular. Many sites
are changing their repositories from CVS
to Subversion (and the Apache group is
no exception).
 I simply added the remainder of the
URL to locate the Pluto project as shown
in Figure 2.

Portlet Specification

by Ken Ramirez

Understanding
Portals and Portlets

I

Ken Ramirez has 17 years

of experience providing

development services,

consulting, and training to

companies (both large and

small) throughout the United

States. He consults in

various market industries

including finance, insurance,

computer-aided design, com-

munity portals, and

automobile. Ken’s Java

expertise includes J2EE, XML,

portals, UML, and many

open source technologies.

His latest venture is the

www.TheJavaThinkTank.org

community portal site.

kramirez@TheJavaThinkTank.com

A real-world implementation Part 2

 Figure 1 New options added by Tortoise

13December 2004www.SYS-CON.com/JDJ

 Once you download Pluto’s source
files you’ll have a complete directory
tree with the necessary files needed
to build Pluto. You can always update
Pluto with newer changes by opening
the context menu offered by Tortoise.
You’ll notice that the menu will change
to reflect new choices available now that
you have downloaded Pluto.
 To run Maven against the Pluto file,
you’ll need to perform the following
tasks:
1. Copy the build.properties.sample

file to build.properties.
2. Modify the build.properties and

specify the location and version of
Tomcat:

maven.tomcat.home=/tomcat-5.0.27

maven.tomcat.version.major=5

3. Run the maven fullDeployment
command.

 The fullDeployment operand tells
Maven to run this task within the proj-
ect file. The task has been provided with
everything needed to download any
necessary or missing projects, compile
Pluto, and deploy Pluto.
 Now, you’re ready to access Pluto
for the first time (it comes with a test
portal). First, you’ll need to run Tomcat.
Once Tomcat has finished loading, you
can access the portal by surfing over
to http://localhost:8080/pluto/portal.
You should be presented with the page
shown in Figure 3.
 If you click on the Test portal, you’ll
be able to test out much of what a JSR
168 portlet has to offer. You’ll see two
instances of the same portlet host on a
portal page with two columns (one for
each portlet). The source code can be
located at [pluto-installation-dir]/test-
suite.

The ImageViewer Portlet
 When I thought about writing the
example for this article, I wanted to
come up with an idea that was simple
enough to understand, yet realistic
enough to give you a starting point for
building your own real-world portlets.
(The source code for this article can be
downloaded from www.sys-con.com/
java/sourcec.cfm.) The result is a portlet
that utilizes many JSR 168 features to
provide an end user with a portlet that
has two portlet modes: view and edit.
 The view mode allows the end
user to specify an image stored in a
subdirectory named images on the
server side (relative to the portlet’s
context root), and displays the image
within the portlet on the way back to
the browser. After entering a name
and clicking the “Show Image” button,
the user is presented with the result as
illustrated in Figure 4.
 You’ll notice that there is some text
in the portlet that specifies, "color =
white". White is the default color chosen
for the portlet’s background. However,
this can be changed by entering the Edit
mode of the portlet, which is achieved
by clicking on the “edit” link on the
portlet’s title bar. When you do so, you’re
presented with the output shown in
Figure 5.
 If you change the selection to “Blue”
and press the “Change Color” but-
ton, then go back to View mode and
select an image, you’ll notice that the
background now reflects the new back-
ground color.

The ImageViewer
Source Code Explained
 Now that you’ve seen the ImageView-
er portlet from the end-user’s perspec-
tive, let’s take an in-depth look at the
source code.

 The first thing I did was to set up my
directory structure, which resembles the
image shown in Figure 6.
 I knew that I would be building the
files listed in Table 1.

The Portlet.XML
Deployment Descriptor File
 Let’s look at the portlet.xml file,
which contains the various descriptors
used to deploy the portlet properly (see
Listing 1).
 The first part of the file includes the
standard customary XML tag used to
identify the file and the schema used to
validate the file’s content. Next, we see
the root portlet tag. Within this tag are
several other tags including descrip-
tion, portlet-name, display-name,
portlet-class, init-param (of which there
are three), supports (for mime types),
locale, and portlet-info. The most
important of these tags are the portlet-
name and the portlet-class tags.
 The portlet-name provides a name
that can be used internally or program-
matically to reference the portlet, while
the portlet class provides the classpath

 Figure 2 The completed Checkout dialog box in order to retrieve Pluto

 Figure 3 Pluto running in Tomcat Table 1 The list of files built to support the ImageViewerPortlet

File Location Description
portlet.xml ImageViewer/war/WEB–INF Contains the portlet’s deployment
 descriptors

edit.jsp ImageViewer/war/jsp Generates theHTML needed for
 the Edit mode of the portlet

view.jsp ImageViewer/war/jsp Generates the HTML needed for
 the View mode of the portlet

various image files ImageViewer/war/images Contains any number of images
 you wish to view through the portlet

ImageViewerPortlet.java ImageViewer/src/com/thejavathinktank/ Contains the source code for the
 portlets portlet

build.properties ImageViewer root directory Contains any properties used in the
 build process

build.xml ImageViewer/build Contains the Ant build script

www.SYS-CON.com/JDJ14 December 2004

used by the portlet container to load the
appropriate class and create instances
from it.
 The description tag can be used by
development tools to provide a descrip-
tion of what the portlet does, whereas
the display name can be used to provide
the developer with a unique name that
(hopefully) differs from other portlets in
the portlet catalog. As portals become
more popular, you’ll start to see drag-
and-drop support within the various
development environments, allowing
developers to drag portlets onto a portal
page and drop them into the page. The
display name will become very im-
portant, showing the developer which
space is occupied by which portlet.
 I included three different init-param
values that provide the portlet with the
names of the JSPs used for its View and
Edit modes and the default background
color of white.
 The supports tag provides the mime-
type tag, which tells the portlet contain-
er that the portlet will provide HTML for
the various views and that two different
modes are supported: View and Edit.
The supported locale tag specifies that
our chosen language is English.
 Finally, the deployment descriptors
provide the title tag, used by default for
providing a title for the portlet in the
portal page; the short title, which can be

used to provide a shorter version of the
title (for use in WAPs or other devices
that have a smaller screen display area);
and keywords, which are used to search
for portlets within development tools.
The search can, for example, narrow
down the catalog of portlets to a few
portlets that support stock screening
or image manipulation, or whatever
other functionality you’re interesting in
providing your end users with from your
portal pages.

The ImageViewerPortlet
Java Source File
 The source code for the ImageView-
erPortlet.java file starts off by defining
the package name and importing the
necessary packages and/or classes.
Next, it names the class and provides
the methods. There are no data mem-
bers in this class (see Listing 2).
 The first method we’ll look at is init().
This method doesn’t have much to
do in this case, but I wanted to assure
you that it is in fact called. Therefore, I
simply added an output message to the
console.
 Now it’s time to meet the processAc-
tion() method. Based on the retrieved
portlet mode, the portlet determines
whether it’s in View mode or Edit mode.
If it is in View mode, this method simply
has to copy the present parameters
(passed from the user’s browser, which
includes the image name the user
wishes to see) into the response’s render
parameters so they can be picked up
by the doView() method. If the portlet
is in Edit mode, it retrieves the current
background color from the request (this
is always passed in the JSP as you’ll soon
see), and places it in the PortletSession
(where it can be picked up by the JSP
page). I could have used portlet prefer-
ences for the background color (along
with a validator class), but I chose to
keep the example simple.
 Next, we come to the doView()
method. This method retrieves the Port-
letSession object, which can be used to
then retrieve the bgColor. This is just
one of many ways to pass data around. I
simply wanted to use as many tech-
niques as possible without overwhelm-
ing you.
 If the background color has not been
set into the session, it’s set at this point
by retrieving the default color from the
portlet’s configuration object using the

getInitParameter() method.
 Next, I set the mime type for the view
mode and dispatch to the JSP page
(including its output in the final HTML
sent to the browser).
 Finally, the doEdit() method appears
in the listing. This one is pretty simple
and resembles the bottom half of the
doView() method. The only difference is
that it dispatches to the Edit JSP instead
of the View JSP.

The View JSP
 The view.jsp file provides the source
code in Listing 3. The top portion of
this file includes the portlet tag library.
One of the most important steps you
must take (before you can use any of the
portlet internal objects) is to call portlet:
defineObjects tag, which is provided
by the tag library. Next, it creates a few
variables to hold the action URL, the
image filename the user specified, and
the background color (retrieved from
the session object).
 After creating the variables, the
HTML provides a string containing
the current color, a form to include
the controls used by the user to inter-
act with the portlet, and the submit
button.
 If a filename is provided, the name
is used with some special methods
to conjure up a complete path to the
actual image file. You must use the ren-
derRequest.getContextPath() method to
create a legitimate path. Don’t assume
that you could simply use the relative
path and it will work.
 Finally, the newly created path is used
in the image tag to display the image
within the portlet.

The Edit JSP
 The code for the Edit JSP isn’t much
different from that of the View JSP. It
only differs in its content, which should
be very self-evident (if you know HTML
at least at a basic level). See Listing 4 to
view the source code for the edit.jsp file.

Deploying to Pluto
 To build the source code, I created
an Ant file. Once you have compiled
the code, you can deploy it to the Pluto
portal using the following commands:

cd\jakarta-pluto

maven deploy -Ddeploy=/ImageViewer/target/

ImageViewer.war

Portlet Specification

 Figure 4 ImageViewer portlet after specifying an image name

www.SYS-CON.com/JDJ16 December 2004

There are still a few more steps you have
to follow in order to view the portlet
within Pluto. You need to modify the
Portlet Entity Registry and the Page Reg-
istry files. These can be located at:

[tomcat-home]/webapps/pluto/data/portletenti-

tyregistry.xml

[tomcat-home]/webapps/pluto/data/pageregis-

try.xml

 The portlet entity registry file requires
that you specify an application and a
portlet ID for your new portlet. The ap-
plication ID must be unique. The portlet
entity registry file also needs to know
the name of the portlet so that it can
go out and find it in the webapps path.
Furthermore, this information is used to
map the portlet name to the appropri-

ate classpath for loading the class. The
following are my additions to the portlet
entity registry file:

<application id="6">

 <definition-id>ImageViewer</defini-

tion-id>

 <portlet id="1">

 <definition-id>ImageViewer.

ImageViewerPortlet</definition-id>

 </portlet>

 </application>

 The page registry provides Pluto with
the layout information for your portlet.
The names used in the fragments must
be unique as in my example:

<fragment name="ImageViewerPortlet"

type="page">

 <navigation>

<title>ImageViewer Portlet</title>

<description>...</description>

 </navigation>

 <fragment name="row3" type="row">

 <fragment name="col3" type="column">

 <fragment name="p4" type="portlet">

 <property name="portlet" value="6.1"/>

 </fragment>

 </fragment>

 </fragment>

 In the above example, I simply told
Pluto that I will need one row by one
column. Within that row/column, I want
it to display the portlet identified by “6.1”.
The number “6” is the application ID and
“1” is the portlet ID.
 After you edit and save the two XML
files, restart Tomcat and you should now
see the Portal page link named “Image
Viewer”.

Summary
 Although I’ve tried to provide you with
as much information and features as I
could, the only true way to learn how
to build the JSR 168 portlets is to jump
right in and do it. You should be able to
use this code as the foundation for other
portlets. Remember, if you do decide to
start creating portlets, try to make them
self-contained units of work. That way,
they can be shared across projects, teams,
and possibly even companies.

Portlet Specification

 Figure 5 Edit mode of ImageViewer portlet Figure 6 Project directory structure

Listing 1: portlet.xml file

 <portlet>

 <description>Image Viewer Portlet</description>

 <portlet-name>ImageViewerPortlet</portlet-name>

 <display-name>Image Viewer Portlet</display-name>

 <portlet-class>com.thejavathinktank.portlets.ImageViewerPortlet</

portlet-class>

 <init-param>

 <name>jspView</name>

 <value>/jsp/view.jsp</value>

 </init-param>

 <init-param>

 <name>jspEdit</name>

 <value>/jsp/edit.jsp</value>

 </init-param>

 <init-param>

 <name>bgColor</name>

 <value>white</value>

 </init-param>

 <supports>

 <mime-type>text/html</mime-type>

 <portlet-mode>VIEW</portlet-mode>

 <portlet-mode>EDIT</portlet-mode>

 </supports>

 <supported-locale>en</supported-locale>

 <portlet-info>

 <title>ImageViewer Portlet</title>

 <short-title>ImageViewer</short-title>

 <keywords>Images, Viewer</keywords>

 </portlet-info>

 </portlet>

 </portlet-app>

Listing 2: The ImageViewerPortlet Java class

package com.thejavathinktank.portlets.imageviewerportlet;

import javax.portlet.*;

import java.io.IOException;

public class ImageViewerPortlet extends GenericPortlet

{

 public void init() throws PortletException

 {

�
�

www.SYS-CON.com/JDJ18 December 2004

Portlet Specification

 System.out.println("Entered ImageViewerPortlet.init() meth-

od");

 }

 public void processAction(ActionRequest request, ActionResponse

response)

 throws PortletException, java.io.IOException

 {

 PortletMode pm = request.getPortletMode();

 System.out.println("PortletMode = " + pm);

 if (pm.equals(PortletMode.VIEW))

 {

 System.out.print("Request Image file is: ");

 System.out.println(request.getParameter("filename"));

 response.setRenderParameters(request.getParameter-

Map());

 } else if (pm.equals(PortletMode.EDIT))

 {

 String bgColor = request.getParameter("bgColor");

 PortletSession ps = request.getPortletSession();

 ps.setAttribute("bgColor", bgColor);

 System.out.println("New color = " + bgColor);

 }

 }

 public void doView(RenderRequest request, RenderResponse

response)

 throws PortletException, IOException

 {

 // Assign bg color if it doesn't exist

 PortletSession ps = request.getPortletSession();

 String bgColor = (String) ps.getAttribute("bgColor");

 if (bgColor == null)

 {

 bgColor = getPortletConfig().getInitParameter("bgColo

r");

 System.out.println("Setting default bg-color to " +

bgColor);

 ps.setAttribute("bgColor", bgColor);

 }

 response.setContentType("text/html");

 String jspName = getPortletConfig().getInitParameter("jspV

iew");

 PortletRequestDispatcher rd = getPortletContext().getRe-

questDispatcher(

 jspName);

 rd.include(request, response);

 }

 public void doEdit(RenderRequest request, RenderResponse

response)

 throws PortletException, IOException

 {

 response.setContentType("text/html");

 String jspName = getPortletConfig().getInitParameter("jspE

dit");

 PortletRequestDispatcher rd = getPortletContext().getRe-

questDispatcher(

 jspName);

 rd.include(request, response);

 }

}

Listing 3: The view.jsp file

<%@ page session="false" %>

<%@ page import="javax.portlet.*"%>

<%@ page import="java.util.*"%>

<%@ taglib uri='/WEB-INF/tld/portlet.tld' prefix='portlet'%>

<portlet:defineObjects/>

<%

 PortletURL url = renderResponse.createActionURL();

 String filename = (String)renderRequest.getParameter("filename");

 PortletSession ps = renderRequest.getPortletSession();

 String bgColor = (String)ps.getAttribute("bgColor");

%>

color = <%=bgColor%>

<form method="post" action="<%=url.toString()%>" style="background-

color: <%=bgColor%>">

<p>Please enter the name of the image you wish to see</p>

<input type="text" id="filename" name="filename"/>

<button type="submit">Show Image</button>

</form>

<%

 filename = renderResponse.encodeURL(renderRequest.getContext-

Path())+"/images/"+filename;

%>

<img src="<%=filename%>"alt="Image will be displayed here">

Listing 4: The edit.jsp file

<%@ page session="false" %>

<%@ page import="javax.portlet.*"%>

<%@ page import="java.util.*"%>

<%@ taglib uri='/WEB-INF/tld/portlet.tld' prefix='portlet'%>

<portlet:defineObjects/>

<h1>

Edit Mode

</h1>

Please select a color for the background

<%

 PortletURL url = renderResponse.createActionURL();

 PortletSession ps = renderRequest.getPortletSession();

 String bgColor = (String)ps.getAttribute("bgColor");

%>

<form method="post" action="<%=url.toString()%>">

 <input name="bgColor" type="radio" value="white"

 <%=bgColor.equals("white") ? "CHECKED" : ""%>/>White

 <input name="bgColor" type="radio" value="black"

 <%=bgColor.equals("black") ? "CHECKED" : ""%>/>Black

 <input name="bgColor" type="radio" value="blue"

 <%=bgColor.equals("blue") ? "CHECKED" : ""%>/>Blue

 <input name="bgColor" type="radio" value="red"

 <%=bgColor.equals("red") ? "CHECKED" : ""%>/>Red

 <input name="bgColor" type="radio" value="green"

 <%=bgColor.equals("green") ? "CHECKED" : ""%>/>Green

 <button type="submit">Change Color</button>

</form>

Current Portlet Mode: <%=renderRequest.getPortletMode()%>

Current Window State: <%=renderRequest.getWindowState()%>

�
�

19December 2004www.SYS-CON.com/JDJ

�
�

www.SYS-CON.com/JDJ20 December 2004

n Part 2 of this two-part series
(Part 1 appeared in Vol. 9, issue
4) I shall try to construct an XML
Schema, take you through the

steps required to convert an XML
document into its corresponding Java
classes and interfaces, and also show
how to generate an XML document
(by using the generated Java classes
and interfaces) from a Java object
tree, in a programmatic fashion.

A Brief Recap
 Part 1 introduced the fundamen-
tal concepts of Java Architecture for
XML Binding (JAXB) and gave some
insights into how it can be used in
a typical J2EE-based enterprise
application.
 The power of JAXB comes from
the fact that it removes the developer
from the shackles of arduous XML-
to-Java (and vice versa) conversion.
Its feature-rich specification allows
a Java developer to incorporate
Java-specific programming con-
structs as part of the XML Schema.
Among the rich set of features,
the specification class allows the
addition of Java packages, Javadoc
comments, Collection classes, etc.,
to the XML Schema. Once config-
ured, this becomes part of the Java
classes and interfaces that are gener-
ated by the JAXB compiler.

Example Scenario
 We are going to work with an example
of a simple library. An oversimplified
library may be modeled as a collec-

tion of books. Each book has a list of
attributes (title, author, ISBN code, etc.).
Books may be added or removed from a
library.
 Referring to Listing 1, the complex-
Type Book has three attributes while
the complexType Library is composed
of a collection of elements of type Book.
BookItem is declared as an
element of type Book while CityLibrary
is declared as an element of type Library.
Any XML document that conforms to
this XML Schema can either have a
CityLibrary or a BookItem as the root
element. A CityLibrary element may
contain one or more BookItem elements
and any BookItem element contains
three attributes. Any reference to ele-
ments within the XML Schema is quali-
fied by a namespace – domainObjects in
this scenario.
 Once the XML Schema is defined,
the first step is to use your favorite
editor to compile the schema using the
JAXB compiler. This produces the Java
classes and interfaces in the desired
package(s). Listing 2 provides the out-
put of running the JAXB compiler on
our schema file.
 The compiler can be run with the fol-
lowing command:

 xjc.bat –p <package name> -d <working

directory>

where <package name> is the package
where the Java artifacts are to be gen-
erated and <working directory> is the
directory in the file system where the
packages are going to be generated.

(Note: For a Unix-based system, the
compiler script is called xjc.sh.)
 Figure 1 illustrates the list of Java ar-
tifacts that are generated after running
the schema through the JAXB compiler.
 Once this is created, the developer
is ready to harness the real potential of
JAXB. The developer can now interpret
any XML file that conforms to the
XML Schema (from which the above
Java artifacts were generated). The
process of interpretation is known as
unmarshalling (the creation of a Java
object tree from an XML document).
You can also use the generated classes
to programmatically create an XML
document. This process is known as
marshalling (the creation of an XML
document from the Java objects).
 The first step for the developer is to
obtain a reference to the JAXBContext
object. This object has methods to
retrieve references to the Marshaller
and the Unmarshaller objects.
 The Marshaller object instance is
used in any subsequent marshalling
process while the Unmarshaller object
instance is used in any subsequent
unmarshalling process.
 Listing 3 is a sample Java class that
illustrates how the JAXB framework can
be used. The method createContext()
creates instances of the Marshaller and
Unmarshaller classes. (Listings 3–5 can
be downloaded from www.sys-con.
com/java/sourcec.cfm.)

Unmarshalling
 In unmarshalling, an XML docu-
ment (as in Listing 4) is accepted as

Java & XML

by Tilak Mitra

Using JAXB in J2EE-Based
Enterprise Applications

I

Tilak Mitra is a Senior

IT architect at IBM.

He specializes in mid-to-

large-range enterprise

and application

architectures based on

SOA, J2EE, MQ, and

other EAI technologies.

tmitra@us.ibm.com

Narrowing the bridge between XML and Java Part 2

The power of JAXB comes from the fact that it removes the developer
from the shackles of arduous XML–to–Java (and vice versa) conversion”“

21December 2004www.SYS-CON.com/JDJ

the input. This XML document is
interpreted by the program and corre-
sponding Java classes are instantiated.
 The root element of the XML docu-
ment is CityLibrary, which contains
two Books. Referring to Listing 5,
the method unmarshallIt creates the
root element CityLibraryImpl from
the XML document. This generated
class has methods to iterate through
the list of contained BookImpl
objects.
 It’s up to the application require-
ments from this point – how to use the
data that is now represented as simple
Java objects. There is no Java XML
parsing that is required to interpret
the XML document artifacts. The
simple example that is shown here
iterates through the list of books and
prints out the title and author attri-
butes in each iteration.

Marshalling
 In marshalling, the Java objects
(generated by the JAXB compiler)
are used to create an XML document
whose contents conform to the XML
Schema (see Listing 5).
 A creational class called ObjectFac-
tory (generated by the JAXB compiler)
is used to instantiate any class in the
Java object tree. A careful look into
the classes (in the Java object tree)
illustrates that the element contain-
ment structure in the XML Schema
is represented as contained object
references (using the Java Collections
Framework). Attributes, however,
have getter and setter methods in the
Java object’s representation of the
contained element.
 Referring to Listing 3, the method
marhsallIt first creates an instance
of the root element of a sample XML
document (instance of CityLibrary-
Impl). It then obtains the collection
inside the root element that’s used to
add the nested elements (BookImpl
in this case). Instances of BookImpl
are created using the ObjectFac-
tory class. Attributes of instances of
BookImpl are added using the setter
methods of the corresponding Book-
Impl instances. Once an instance of
BookImpl is created and its attributes
set, the instance is added to the col-
lection of the container CityLibrary-
Impl instance. This way multiple
BookImpl instances can be added
to the CityLibraryImpl instance.
Once the object structure is created,
obtaining the structure’s correspond-

ing XML representation is a simple
matter of invoking a method on the
Marshaller instance, and passing the
reference of the CityLibraryImpl (root
element) as a parameter.

Final Thoughts
 By this time, hopefully, we have
come to terms with how JAXB can
be used in a J2EE-based enterprise
application. Even in a simple example
like the one described in this article,
where can we see this being used?
Say, for example, there is a book
search capability that allows nearby
libraries to search for a list of books
in CityLibrary that matches a specific
criterion (for example, books by a
certain author). The results of the
search can be easily returned in
an XML format using code that is
similar to the marshallIt method in
our example. In more sophisticated
examples, a J2EE application can
accept XML documents (conforming
to the XML Schema from which Java
artifacts have been generated a priori)
and then use JAXB to create Java
objects that can then be easily used in
order to perform application-specific
processing.
 An application’s domain object
model is an ideal candidate to be
modeled in an XML Schema. Using
JAXB, the transformation between
the XML representation and its cor-
responding Java object tree can be
simplified. This will allow XML infor-
mation exchange between various
application tiers and even between
communicating applications – a very
simple piece of work.

Conclusion
 This two-part series attempted to
expose you to the world of JAXB. The
conceptual introduction in the first part
is concluded in the second part with an
illustrative example of the usage of JAXB
in a J2EE-based application.
 The bridge between XML and Java
has really been narrowed with the ad-
vent of JAXB, and I hope that this article
series helps to illustrate this to the JDJ
reader community.

Resources
• JAXB User’s Guide: http://java.sun.

com/xml/jaxb/users-guide/jaxb-
using.html

• JAXB Specification: http://java.
sun.com/xml/downloads/jaxb.
html

• JAXB API Specification: http://java.
sun.com/webservices/docs/1.3/api/
index.html

• JAXB Reference Implementation:
http://java.sun.com/webservices/
downloads/webservicespack.html

 (Note: The Reference Implementa-
tion of JAXB comes packaged inside
the Java Web Services Developer’s
Pack [JWSDP]. Once this is installed,
the JAXB compile time and runtime
libraries are available in the <install-
root>\jaxb directory).

 Figure 1 List of Java artifacts produced by the JAXB compiler

www.SYS-CON.com/JDJ22 December 2004

Java & XML

Listing 1
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
 jxb:version="1.0"
 xmlns:domainObjects="http://www.ibm.com/domainobjects"
 targetNamespace="http://www.ibm.com/domainobjects"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
 jxb:extensionBindingPrefixes="xjc">

 <!-- Global Settings -->

 <xsd:annotation>
 <xsd:appinfo>
 <!-- JAXB Global bindings inition reference:

 <globalBindings>
 [collectionType = "collection"]
 [fixedAttributeAsConstantProperty= "true" | "false" | "1" |
"0"]
 [generateIsSetMethod= "true" | "false" | "1" | "0"]
 [enableFailFastCheck = "true" | "false" | "1" | "0"]
 [choiceContentProperty = "true" | "false" | "1" | "0"]
 [underscoreBinding = "asWordSeparator" | "asCharInWord"]
 [typesafeEnumBase = "typesafeEnumBase"]
 [typesafeEnumMemberName = "generateName" | "generateError"]
 [enableJavaNamingConventions = "true" | "false" | "1" | "0"
]
 [bindingStyle = "elementBinding" | "modelGroupBinding"]
 [<javaType> ... </javaType>]*
 </globalBindings>
 -->

 <jxb:globalBindings collectionType="java.util.ArrayList"
 fixedAttributeAsConstantProperty="tru
e"
 generateIsSetMethod="false"
 enableFailFastCheck="false"
 choiceContentProperty="false"
 underscoreBinding="asWordSeparator"
 typesafeEnumBase="xsd:NCName"
 typesafeEnumMemberName="generateError
"
 enableJavaNamingConventions="true"
 bindingStyle="elementBinding">

 <xjc:serializable />

 </jxb:globalBindings>

 <!-- JAXB schema bindings definition reference:

 <schemaBindings>
 [<package> package </package>]
 [<nameXmlTransform> ... </nameXmlTransform>]*
 </schemaBindings>

 where:

 <package [name = "packageName"]
 [<javadoc> ... </javadoc>]
 </package>

 and:

 <nameXmlTransform>
 [<typeName [suffix="suffix"]
 [prefix="prefix"] />]
 [<elementName [suffix="suffix"]
 [prefix="prefix"] />]
 [<modelGroupName [suffix="suffix"]
 [prefix="prefix"] />]
 [<anonymousTypeName [suffix="suffix"]
 [prefix="prefix"] />]
 </nameXmlTransform>

 -->

 <jxb:schemaBindings>
 <jxb:package name="com.ibm.library" />
 </jxb:schemaBindings>

 </xsd:appinfo>
 </xsd:annotation>

 <xsd:element name="CityLibrary" type="domainObjects:Library" />
 <xsd:element name="BookItem" type="domainObjects:Book" />

 <xsd:complexType name="Book">
 <xsd:attribute name="title" type="xsd:string"/>
 <xsd:attribute name="author" type="xsd:string"/>
 <xsd:attribute name="isbn" type="xsd:integer"/>
 </xsd:complexType>

 <xsd:complexType name="Library">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:appinfo>
 <jxb:property name="Books" />
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:element ref="domainObjects:BookItem" />
 </xsd:choice>
 </xsd:complexType>

</xsd:schema>

Listing 2: Output of the JAXB compiler
parsing a schema...
compiling a schema...
com\ibm\library\Book.java
com\ibm\library\BookItem.java
com\ibm\library\CityLibrary.java
com\ibm\library\Library.java
com\ibm\library\ObjectFactory.java
com\ibm\library\bgm.ser
com\ibm\library\jaxb.properties
com\ibm\library\impl\runtime\ValidatableObject.java
com\ibm\library\impl\runtime\ValidatingUnmarshaller.java
com\ibm\library\impl\runtime\PrefixCallback.java
com\ibm\library\impl\runtime\GrammarInfoFacade.java
com\ibm\library\impl\runtime\Discarder.java
com\ibm\library\impl\runtime\UnmarshallingEventHandlerAdaptor.java
com\ibm\library\impl\runtime\SAXMarshaller.java
com\ibm\library\impl\runtime\NamespaceContextImpl.java
com\ibm\library\impl\runtime\ErrorHandlerAdaptor.java
com\ibm\library\impl\runtime\UnmarshallerImpl.java
com\ibm\library\impl\runtime\SAXUnmarshallerHandler.java
com\ibm\library\impl\runtime\MSVValidator.java
com\ibm\library\impl\runtime\UnmarshallingContext.java
com\ibm\library\impl\runtime\XMLSerializer.java
com\ibm\library\impl\runtime\AbstractUnmarshallingEventHandlerImpl.
java
com\ibm\library\impl\runtime\XMLSerializable.java
com\ibm\library\impl\runtime\UnmarshallableObject.java
com\ibm\library\impl\runtime\GrammarInfo.java
com\ibm\library\impl\runtime\NamespaceContext2.java
com\ibm\library\impl\runtime\MarshallerImpl.java
com\ibm\library\impl\runtime\ContentHandlerAdaptor.java
com\ibm\library\impl\runtime\Util.java
com\ibm\library\impl\runtime\DefaultJAXBContextImpl.java
com\ibm\library\impl\runtime\ValidationContext.java
com\ibm\library\impl\runtime\ValidatorImpl.java
com\ibm\library\impl\runtime\UnmarshallingEventHandler.java
com\ibm\library\impl\runtime\GrammarInfoImpl.java
com\ibm\library\impl\runtime\SAXUnmarshallerHandlerImpl.java
com\ibm\library\impl\BookImpl.java
com\ibm\library\impl\BookItemImpl.java
com\ibm\library\impl\CityLibraryImpl.java
com\ibm\library\impl\JAXBVersion.java
com\ibm\library\impl\LibraryImpl.java

www.SYS-CON.com/JDJ24 December 2004

ou’ve engineered a J2EE application that has become
mission critical for your business operations. You
know that downtime will be less acceptable as the
business starts to rely more on the application, so you

want to start eliminating single points of failure and improve
availability. One of your fi rst thoughts might be: “Let’s move
to a clustered application server environment.”

 Migrating to a clustered environment is a reasonable
thing to do, but if this is your fi rst experience with cluster-
ing application servers, make sure you understand what
you’re getting into when you go to your project owner and
tell him or her about your plans.

Project Considerations
Why Are You Migrating to a Cluster?
 Before anything, make sure you’re migrating to a cluster at
the right time and for the right reasons. A clustered applica-
tion server environment can give you failover capabilities,
which will help you sleep a little better at night and should
help distribute the load a little bit, delaying the point at which
your hardware becomes inadequate. If you’re squeezed by
tight budgets, make sure you’re tackling the highest priority
issue in your system so you make the most of your limited
resources.
 What are the consequences of not doing it? Business
owners who have lean budgets might need to understand
the chances of downtime occurring and its implications.
Also, you could consider alternatives, such as a multiserver
environment that doesn’t involve clustering. Clustering
can give you advantages such as:
• Load distribution
• High availability
• Session failover
• EJB sharing
• Centralized control

 However, there are other ways to distribute the load
among servers, and you might not be using EJBs for per-
sistence, so you wouldn’t need to take advantage of EJB
sharing. Adding other server instances in a nonclustered
fashion could give you the high availability you desire. Your
decision to go with a cluster might come down to whether

or not it is important that all users who had been hitting a
server keep their session intact and not notice if that server
goes down. The bottom line is that there is a cost-benefi t
consideration that needs to be made, and, usually, if there
are external customers or important business processes
involved, it is easy to see how failover and clustering can
be important. Just remember that you have options.
 In any case, be sure that there is a need and be ready to
discuss not only the migration costs, but also some of the
ongoing costs described below.

One Change at a Time, Please
 Migrating to a cluster isn’t always straightforward. Don’t
make your life more diffi cult by changing the application’s
functionality as part of your project. If you are managing a
migration project, make sure that business owners don’t try
to tack on new functionality or other application changes
as part of the project. After rollout, you’ll need to be able to
determine if a problem is related to the new environment.
Adding new functionality will make troubleshooting that
much more diffi cult after rollout. Also, you’ll want to be able
to make a fair comparison between the old and new envi-
ronments based on metrics and measurements, identifying
if performance has improved after the migration; changes in
functionality will skew such measurements.

Test the Failover Capabilities
 Part of a project plan to deploy the cluster should be to
shut down servers in the cluster and see how well the re-
maining applications perform. Besides verifying the basic
failover capabilities, you might uncover some code design
points that do not support the cluster.
 Be sure to test the system by shutting down each appli-
cation server node (leaving at least one node up), and also
by shutting down individual applications within the node
(leaving at least one instance of the application running),
and verifying that each combination still results in a work-
ing system.

Administration Considerations
Cluster Other Environments, Not Just Production
 You might be thinking that since it is the same application,
why bother clustering the other environments, such as the

David Purcell is a Web

applications supervisor for

the Minnesota State Colleges

and Universities system.

He has been a senior

applications architect in the

IT industry for nearly a decade,

providing technical leadership

on Web application projects

of all sizes.

david@supercell.org

by David Purcell

Y

 Moving to a

 Cluster...
What the guidebook doesn’t tell you

Feature

25December 2004www.SYS-CON.com/JDJ

certification or staging environments? They don’t need the
failover capabilities. Think again. First, you’ll need to make
sure that you have set up the environments and configured
the servers properly for the cluster. What better way to start
than in an environment that won’t become a production
environment? More important, however, is that to truly test
your application, you’ll want your test environment to look
just like your production environment. If a problem exists
with your setup, you need to find it.
 Setting up the certification environment to match the
production environment is standard practice for many
organizations. However, the extra costs of hardware and
server licenses might make departments on a lean budget
try to get by without setting up identical environments. In
the end, the costs of not doing so will probably catch up with
them. On a recent project, for instance, I saw how a machine
hosting a directory server masked an underlying problem in
the certification environment, as its hardware was different
than the production environment’s. Although the problem
existed in both environments, it manifested itself differently
in the certification environment. The problem wasn’t noticed
until the system was deployed into the production environ-
ment, and the trouble that it caused resulted in downtime
and significant troubleshooting expenses. Having identical
environments will save you time and money in the long run.

Little Things Add Up
 Be prepared for a brief period of
frustrations while getting to know
the new environment. Your cluster’s
behavior might have some “nuanc-
es” that take some getting used to.
For example, in a recent migration,
we saw an unusual problem appear
for the first time as we deployed an
application to production. In our
case, the two servers in the cluster
were producing different results.
This wasn’t supposed to happen,
and we were able to resolve it, but
now we know what to do in that un-
usual circumstance. Little tricks like that
are learned only from experience. Expect
some initial rough patches.
 Also, debugging might become a little more
tedious. For example, someone may experience a problem,
but you don’t know which instance of the server handled
the request. When trying to debug an issue in a nonpro-
duction environment, you might want to shut down one
instance of the server so you can more quickly focus on the
problem.

Don’t Let the Redundancy Fool You
 Just because you have redundancy built into the system,
don’t let that fool you into thinking you can be a little more
lax with respect to administration practices. Don’t take
down an instance of the cluster during the day to perform
maintenance if you wouldn’t have done that before you had
the cluster. Of course, large systems with many instances in
the cluster are designed to do just that, but small opera-
tions need to make sure they don’t abuse their new cluster-
ing capability. The bottom line is, you probably still need to
perform maintenance tasks after hours.

Application Design Considerations
Primary Key Generation
 There are many techniques for primary key generation,
but not all are cluster-safe. Be sure you understand how
your primary key generation works and see if it should be
used in a cluster.
 Persistence mechanisms, such as Hibernate, should
identify which of their primary key generators are safe
when used in a cluster. A mechanism we used had a seem-
ingly simple CMP bean implementation of a primary key.
Although it appeared to be cluster-safe, the entity bean
that kept track of the latest primary key only wrote to the
database for every 10 requests it received. Therefore, in a
situation with multiple servers, each one eventually got to
the tenth item and wrote to the db, overwriting the previous
value.

Not Everything Can or Should Take Advantage of Clustering
 In a clustered environment, most application servers
will share some objects, so it doesn’t matter which instance
of the application server handles a request. However,
some objects are not going to be able to take advantage of
clustering. File services or timed tasks, for example, will not
take advantage of being shared between instances of the
application server, and probably shouldn’t.
 If you have objects that use timed tasks, such as classes
that implement java.util.TimerTask, those tasks will not be
shared across the cluster, even if they are associated with
objects that are shared across the cluster. The result is that

each server will be running its own tasks. So if you have
timed tasks and you don’t want

multiple instances of the task to
be running, you need to come
up with a way around it. Clark
Richey’s article, “Clustered

Timers” (JDJ, Vol. 9, issue
3, www.sys-con.com/story/

?storyid=43944), provides a good
discussion on timers in a clus-

tered environment. In our case, we
knew that the timers were running

in each server, but we implemented
a mechanism where they had to check

a database record to see if they should
continue with their process. Only one instance of the

timer would be allowed to perform its process.

Watch Out for File Services
 File services also need to be managed carefully if you
have a clustered environment. If you have a process that
is writing or reading files from a file server, you need to
make sure that each instance of the application server
can access that same file server location. That means you
need to have identical mount points established on each
machine. For Windows machines, it’s best to use UNC
(universal naming convention) when defining a location
on a file server, rather than a Windows mapped drive, as
the mapped drive only exists when a user is logged on to
the machine, which means that it might not always be
available.
 If you have a situation where you have lots of writes to
only one file, you might want to consider having each ap-
plication server maintain its own instance of the file, and

www.SYS-CON.com/JDJ26 December 2004

then setting up a nightly cron job to merge the files. If you
don’t want to mess with that kind of maintenance issue,
or the merge won’t meet your business needs, consider
changing that type of function to use a database instead of
writing to a file.

JSP/Servlet Clustering and HttpSession State Failover
 One of the primary features of clustered application
servers is the ability to cluster servlets and JSPs by sharing
HttpSession objects across the cluster. The advantage of
this is that if one server in the cluster goes down, the
user’s HttpSession remains, and the user doesn’t notice
the difference.
 I’ve already mentioned how some objects can’t be clus-
tered, so those objects are certainly ones that you wouldn’t
want to put into the HttpSession. However, keep in mind
that since the HttpSession objects are going to be kept on
other servers, the memory requirements on each server
might not be reduced much by distributing the load. Usu-
ally the HttpSession will be kept in memory on the server
that the user first visits, and another server hosts a replica
of the HttpSession. If you only have two servers, each server
will hold the entire set of all HttpSession state objects, not
half of them.
 When designing applications for a clustered environ-
ment, keep in mind that your session objects should be
serializable, you should keep the session objects small, and
you shouldn’t overuse the HttpSession by keeping every-
thing in it. When your project is being tested, make sure
you test the failover capabilities of the servers to verify that
the HttpSession is always available and users don’t notice
when a server is taken offline.

EJB Handles and Distributed Applications
 When you had an application deployed in a nonclustered
environment, you might have been able to take advantage
of knowing where your applications lived. For instance, in
a distributed environment, if one application had to call an
EJB on another server, the calling application could cache
the EJBHome handles in a ServiceLocator, rather than
performing a lookup each time the handle was needed.
This would give you a slight performance improvement.
However, if the EJBs were now distributed among a cluster,
that same cache would result in a situation in which an
application instance would always call the same server to
get the EJB, rather than distribute the requests among the
different instances. The caching would result in nullifying
some of the advantages of the cluster. To complicate the
matter, the application would appear to work fine, so you
might not be able to see the problem until one instance of
your cluster had to shut down.

 EJB containers on many of the major application serv-
ers provide mechanisms to handle distributing the load
among clusters. BEA’s WebLogic server, for instance, allows
you to specify in the deployment descriptors that an EJB is
clusterable. In that event, the EJBHome stub, and possibly
the EJBObject remote stub, are aware of the cluster (replica-
aware stubs), and will try to find a different server if the
initial call fails. Whether or not an EJB can use a replica-
aware EJBObject remote stub depends on the type of EJB
and, for entity EJBs, the concurrency strategy (read only or
read-write) selected at deployment time.
 IBM’s WebSphere provides a concept called EJB Work-
load Management. No specific deployment configuration
changes are required for the EJBs to be clusterable, as long
as the EJB client makes requests through the WLM Plug-In
in the client application server.
 WebSphere supports clustering of stateless session
beans and the clustering of stateful session bean home
objects among multiple application servers. However, it
does provide clustering of a specific instance of a stateful
session bean. Each instance of a specific stateful session
bean can exist in only one application server, so once the
bean instance is created, requests to the bean must be
directed to that particular application server. For entity
beans, the WebSphere EJB container supports three differ-
ent entity bean caching options that define where the bean
can be accessed (which servers) and when it is reloaded
and passivated.
 Be sure to take the time to understand the clustering
capabilities of your container with respect to EJBs. If such
clustering capabilities aren’t available, don’t cache the
EJBHome handles in your client. Again, testing the failover
capabilities of your server is important. You will want to
make the changes that you think are needed, and then
test failover to make sure there aren’t any dependencies
between servers.

Conclusion
 Migrating from a single-server environment to a
clustered environment may sound straightforward, but
you need to enter such an endeavor with the appropriate
expectations. Certainly, you need to understand the
technical implications of using a cluster, including the
configuration, administration, and software design
changes that you need to make. However, you also need
to make sure the migration project team has the right
expectations, takes the time to test the clustering capabili-
ties thoroughly, and doesn’t convolute the project with
changes to your application. If you prepare yourself with
some of these steps, your migration effort will be much
smoother.

Feature

Migrating to a cluster isn’t always straightforward.
Don’t make your life more difficult by changing the application’s

functionality as part of your project”
“

��
��

��
��

��
��

��
��

��
��

��
��

��
��

���
���

��
��

��
��

���
��

��

�
��

��
��

��

�
��

��
��

�

����������������������������������
������������������

Crystal Reports 10
�����������������

��������
������������������

��������
���������������

��������

Report Creation
Visual report designer for rapid data access and formatting • • •1 •1 • •
Customizable templates for faster, more consistent formatting • • • •
Repository for reuse of common report objects across multiple reports4 • • •
Data Access
PC -based and Microsoft® ODBC/OLE DB for MS Access and SQL Server • • • • • •
Enterprise database servers (ODBC, native) • •1 •1 • •
Custom, user -defined data through JavaBeans™ • • •
Custom, user-defined data through ADO and .NET • • •
Report Integration
Report viewing APIs (.NET and COM SDKs) • • •
Report viewing APIs (Java SDK) • • •
Extensive report viewer options (DHTML, ActiveX, Java Plug - in, and more) • •
APIs for run-time report creation and modification •
Report Parts for embedding report objects in wireless and portal apps • • • •
Report Deployment
Crystal Reports components for report viewing, printing, and exporting:
 a) Java reporting component • • •
 b) .NET reporting component • • •
 c) COM reporting component • •
Full featured report exporting • • •
Report server (Crystal Enterprise Embedded deployment license) •
1 Limited functionality. 2 Bundled with Microsoft® Visual Studio® .NET and Boland® C#Builder™.
3 Bundled with BEA WebLogic Workshop™ and Boland® JBuilder ®. 4 This feature is available on the Crystal Enterprise CD, included in the Crystal Reports 10 package.

We’d like to think that not all
perfect matches are made in heaven.

��
��

��
���

��
��

�
��

��
��

���
��

���
��

���
��

��
��

��
���

��
��

��
��

��
��

��
��

��
��

�
��

��
��

��
�

���
��

��
��

��
��

��
��

��
��

���
��

��
�

��
��

��
��

�
���

��
���

��
��

��
��

��
��

��
��

Perfect matches can be made here too. In order to quickly determine which Crystal Reports® best suits
your project requirements, we’ve provided this basic feature chart. Crystal Reports® 10 simplifies the
process of accessing, formatting, and tightly integrating data into Windows and web applications via
an enhanced designer, flexible data connectivity options, and rich Java™, .NET, and COM SDKs.

To learn more about Crystal Reports 10, compare over 150 different features across versions,
or to access technical resources like the Developer Zone and evaluation downloads, visit:
www.businessobjects.com/dev/p7. To ask more specific report project related questions, contact
an account manager directly at 1-888-333-6007.

��
��

��
��

��
��

��
��

��
��

��
��

��
��

���
���

��
��

��
��

���
��

��

�
��

��
��

��

�
��

��
��

�

����������������������������������
������������������

Crystal Reports 10
�����������������

��������
������������������

��������
���������������

��������

Report Creation
Visual report designer for rapid data access and formatting • • •1 •1 • •
Customizable templates for faster, more consistent formatting • • • •
Repository for reuse of common report objects across multiple reports4 • • •
Data Access
PC -based and Microsoft® ODBC/OLE DB for MS Access and SQL Server • • • • • •
Enterprise database servers (ODBC, native) • •1 •1 • •
Custom, user -defined data through JavaBeans™ • • •
Custom, user-defined data through ADO and .NET • • •
Report Integration
Report viewing APIs (.NET and COM SDKs) • • •
Report viewing APIs (Java SDK) • • •
Extensive report viewer options (DHTML, ActiveX, Java Plug - in, and more) • •
APIs for run-time report creation and modification •
Report Parts for embedding report objects in wireless and portal apps • • • •
Report Deployment
Crystal Reports components for report viewing, printing, and exporting:
 a) Java reporting component • • •
 b) .NET reporting component • • •
 c) COM reporting component • •
Full featured report exporting • • •
Report server (Crystal Enterprise Embedded deployment license) •
1 Limited functionality. 2 Bundled with Microsoft® Visual Studio® .NET and Boland® C#Builder™.
3 Bundled with BEA WebLogic Workshop™ and Boland® JBuilder ®. 4 This feature is available on the Crystal Enterprise CD, included in the Crystal Reports 10 package.

We’d like to think that not all
perfect matches are made in heaven.

��
��

��
���

��
��

�
��

��
��

���
��

���
��

���
��

��
��

��
���

��
��

��
��

��
��

��
��

��
��

�
��

��
��

��
�

���
��

��
��

��
��

��
��

��
��

���
��

��
�

��
��

��
��

�
���

��
���

��
��

��
��

��
��

��
��

Perfect matches can be made here too. In order to quickly determine which Crystal Reports® best suits
your project requirements, we’ve provided this basic feature chart. Crystal Reports® 10 simplifies the
process of accessing, formatting, and tightly integrating data into Windows and web applications via
an enhanced designer, flexible data connectivity options, and rich Java™, .NET, and COM SDKs.

To learn more about Crystal Reports 10, compare over 150 different features across versions,
or to access technical resources like the Developer Zone and evaluation downloads, visit:
www.businessobjects.com/dev/p7. To ask more specific report project related questions, contact
an account manager directly at 1-888-333-6007.

www.SYS-CON.com/JDJ28 December 2004

 challenge of software archi-
tecture is to create software
that can grow with the busi-
ness and withstand changes

to the technology with minimal
redevelopment costs.
 Business growth usually means in-
creased loads on enterprise computer
systems. As more customers and
staff come on board, they put more
transactions through, and may also
require more complex security and
access control requirements. To meet
these demands, the well-architected
enterprise system should be able to
morph and scale as much as possible
without a major redevelopment effort.
Therefore it seems a good idea to
design flexible and scalable multitier
enterprise systems from the start.
However, at the beginning, projects
are often neither able nor willing
to invest in the extra complexities
required to implement such systems.
All too often enterprise systems start
life as a simple two-tier JSP + database
solution and are later reengineered or
completely rewritten as a three-tier
or even four-tier architecture at great
additional cost.
 This article describes a simple ap-
proach to enterprise systems design
and shows how the simple customiza-
tion of the Java Naming and Directory
Interface (JNDI) mechanism can be
used to build highly adaptable and
flexible applications where system
features such as logging, caching,
distribution, transaction manage-
ment, asynchronous or synchronous
invocations, and access control are
bound into the application after it was
built without the need to reengineer
or even rebuild the application code.
 The approach described in this
article is an integral part of the Meta-
Boss Target Software Model and it has
been used very successfully by the
users of the MetaBoss. MetaBoss is an

integrated suite of tools for the design,
development, and management of
software systems through modeling.
It utilizes Model Driven Architecture
concepts and is primarily oriented
toward enterprises using Java-based
tools and technologies. MetaBoss is a
part of the growing family of Profes-
sional Open Source products. It is dual
licensed and can be used under the
Open Source GPL license or MetaBoss
Commercial license. More details are
available from www.metaboss.com.

Danger of Mixing Technology and
Business Code Together
 There are many fine enterprise tech-
nologies out there and this article does
not discuss the merits of using one
rather than another. Almost all of them,

however, have one dangerous feature
– if they’re used in the business code
layer without extra precautions, they
tend to impact the application code to
a point where the application becomes
inflexible from the technological
refactoring point of view. The business
application developer who is coding to
the standard recommended (or even
enforced) by any one of these plat-
forms will likely mix the code dealing
with technology-specific issues with
pure business logic code. The resulting
software is inflexible and too strongly
coupled with the chosen technology.
 This impact can be observed in
practically all areas where technology
touches the application code. Here
are some examples offered by remote
invocation technologies.

System Design

by Rost Vashevnik
Using JNDI...

A

Rost Vashevnik

is a principal architect of

MetaBoss, an open source

MDA tool suite. He works

as a software architect

consultant in Australia.

rost@metaboss.com

. . . to build flexible, technology-independent enterprise systems

 The last few years have seen the emergence of a new paradigm called Aspect-Oriented

Programming (AOP). This mechanism allows the “injecting” of new behavioral features into certain

points of existing application classes. This approach allows the separation of secondary functional-

ity that the main implementation code shouldn’t be concerned about.

 AOP is a great approach and it can be used to separate the business code from technology.

However, my experience is that it has a few weak points.

 First, the AOP paradigm is not native to the Java language. Most of the AOP frameworks include

the need to have an XML document or Javadoc tags that define the join points in the main code

and the need to post process the Java byte code in order to “implant” the callbacks from the main

code to the secondary code. Some other frameworks take a different approach and extend the Java

language, which adds quite a bit of complexity and requires a special compiler. The bottom line is

that AOP is not native to Java.

 Another important weakness is that the main body of code has no idea or control over where

join points will be located. Most of the AOP frameworks allow you to place join points almost any-

where without any limitations, such as entry to or exit from any method or access to any variable.

This approach can present a problem if unsuspecting main code is impacted by something occur-

ring in the advice code or visa versa. Examples of this are multithreading or locking, long execution

time, and unexpected exceptions.

 To illustrate why this lack of control may be dangerous, imagine my car’s owner’s manual.

When talking about changing flat tires, it says “Be sure to use designated jacking positions pro-

vided on the car.” When talking about towing it says “Vehicles fitted with IRS (Independent Rear

Suspension) should always be tray towed.” The manufacturer of my car has provided certain,

well-defined join points for the lifting device and has not provided join points for tow cables simply

because this particular car cannot be pulled. No doubt, attempts to ignore these original design

limitations will be very damaging to my car.

A Few Words About Aspect-Oriented Programming

29December 2004www.SYS-CON.com/JDJ

 The typical requirement is to use
prescribed super interfaces to rep-
resent remote objects. Most of the
technologies require that Java classes
and interfaces representing remote
objects implement certain interfaces
or extend particular abstract classes.
In CORBA we must use org.omg.
CORBA.Object as a super interface of
the remote service object. In J2EE we
must use various super interfaces to
build enterprise beans. The Web ser-
vice interface too (at least when using
JAX-RPC) requires you to extend java.
rmi.Remote. I do acknowledge that
most of these prescribed interfaces
are very simple to implement, and
typically there is absolutely nothing to
do except specify that the class imple-
ments the interface. However, a side
effect is that a number of technology-
specific classes, interfaces, and their
methods are visible to the business
programmer.
 The typical requirement is to use
prescribed value types to represent
remote call parameters. Most of the
technologies document a list of sup-
ported Java value types that can be
used as parameters passed in and out
of the remote services. These lists are

typically very rich and most of the
commonly used types are supported.
Each technology, however, still limits
the number of Java types that can be
used “as is” and leaves it up to the ap-
plication code to deal with the others.
This leads to technology limitations
creeping up into the remote services
interface design.
 The typical requirement is to catch
and process special exception types.
Most of the technologies com-
municate network failures to the
application layer via special types of
exceptions specific to the particular
technology. This means the applica-
tion code may need to catch these
technology-specific exceptions.
 The typical requirement is to use
prescribed coding patterns. Most of the
technologies require the use of very
specific coding patterns, especially
when it comes to connecting to or dis-
connecting from the remote service,
using pervasive services, etc. For
example, to make a remote call to the
J2EE enterprise bean, the client needs
to obtain an instance of the bean
home interface via JNDI, then use
it to obtain the instance of the bean
remote interface and finally make the

remote call. For a CORBA client to
do the same remote call, it has to use
the ORB singleton to connect to the
naming service, then use the nam-
ing service to obtain a remote object
reference, then use the Helper class
to narrow the reference, and finally
make a call.
 To illustrate what may happen
when these technologies are not
insulated from the application code,
consider the following examples.
 An application programmer of a
CORBA-based system has decided to
use an array of org.omg.CORBA.Ob-
ject elements to keep or pass around
the list of previously called business
services. This somewhat short-sighted
decision was made because org.omg.
CORBA.Object was a very convenient
common super interface for all of the
services. This decision entrenches
CORBA technology into the business
code and makes it more difficult to
move this implementation to any
other technology.
 An application programmer of a
J2EE-based system needs to create an
entity bean dealing with value types
from the java.awt.geom package. The
types in this package are value ob-

Technology is hot again. Is your
career? NOW is the time to explore
new opportunities.

Visit Dice.com to find a better job
with better pay. Check your salary.
Compare your skills. Search over
50,000 tech jobs from leading
companies and choose to have
new jobs emailed to you daily.

IT’S TIME for something better.
Visit Dice.com today.

F I N D S O M E T H I N G B E T T E R .

©2004 Dice Inc.

www.SYS-CON.com/JDJ30 December 2004

jects that help to represent geometric
shapes such as Arc, Rectangle, etc.
However, for a reason unknown to us
they don’t implement a Serializable
interface (at least as of JDK 1.4.2).
This means the application program-
mer will probably have to make
the entity bean accept individual
attributes comprising these values
(i.e., separate X, Y, Height, and Width
attributes instead of a Rectangle2D
instance). The net effect is that the
business application component
design is impacted by the deficiencies
of the technology.
 An application programmer of a
simple single-tier system has not given
any attention to the future scalability
and distribution requirements and has
created a simple application using plain
Java classes, without any logical layer-
ing or split of responsibilities between
them. This decision makes it harder
to split the system into the separate
distributed components at a later stage.

Looking for a Better Approach
 When we started to devise the
MetaBoss Target Programming Model
and adopt coding patterns for our
code generators to conform to, we
decided to aim for the ideal business
“friendly” programming model. Such
a model must be as technology-in-
dependent as possible, to the point
where application code looks exactly
the same irrespective of how the sys-
tem will be deployed, and the actual
deployment topography and techno-
logical mechanisms can be chosen

after the application code is built.
At the same time we wanted to stay
within the standard facilities offered
by the Java language as it exists today.
 To achieve these goals we designed
the programming model based on
technology-independent business
components and the use of the JNDI
mechanism for application assembly
(i.e., connecting components with
their clients).
 JNDI is an abstract framework
that provides naming and directory
functionality for Java programs. We
chose JNDI because it has a number
of advantages:
• The mechanism is native to Java

because the JNDI framework is
contained inside J2SE and there-
fore available in any JVM. The Java
community is familiar with JNDI
usage patterns, and the component
lookup pattern, which is used the
most, is relatively easy to learn.

• It offers complete separation of
interface and implementation. The
client has to only be aware of the
component interface and some
kind of location string for use in the
lookup operation. The job of find-
ing or creating the instance of the
interface is delegated to the JNDI
framework and the underlying
naming and directory mechanisms.

The Basics of the MetaBoss Target
Programming Model
 From the component user point of
view, the programming model has the
following features.

 Application code is split into
components. Each component has
a certain well-defined set of respon-
sibilities. This division is driven
entirely by the business logic, busi-
ness needs, and logical layering of
the application. Most important, it’s
not limited or dictated by technol-
ogy issues. As such, the decision to
have an entity-like component or
service-like component can be made
in any application, not necessarily
a J2EE one. This means the compo-
nent boundaries are the only places
where platform mechanisms, such as
remote invocation or caching, can be
plugged in.
 Each component is exposed to its
clients via the component interface
– the plain Java interface that’s not
required to have any properties be-
yond those required by business logic.
Methods in these interfaces are able
to use any Java class as a parameter
and are able to declare and throw any
number of any kind of exceptions.
As before, there are no technology-
motivated requirements to include
anything in the input or output pa-
rameter list or to throw any particular
kind of exception.
 Each component interface is identi-
fied by the unique identifier – we call
it the component URL. The compo-
nent URL is a string that’s formed as
follows:

component:/<fully qualified name of compo-

nent interface>

 Each component interface exposes
a string constant named COMPO-
NENT_URL that contains the unique
identifier of the interface. Listing 1
contains the sample of the typical
component interface with COMPO-
NENT_URL string constant. Apart
from the prefix, COMPONENT_URL
is simply the fully qualified name of
the Java interface exposed by this
component.
 To obtain an instance of the
component, client code has to do a
simple JNDI lookup (see Listing 2,
lines 10 and 11). Note, the client code
only needs to import and be aware of
the component interface and noth-
ing else. The actual instantiation or
lookup of the particular component
implementation occurs at runtime.

System Design

 Figure 1 Simple configuration

Interface

Implementation

Single Java Virtual Machine

Client code

31December 2004www.SYS-CON.com/JDJ

 It may appear that this pattern looks similar to J2EE.
It does; however, there are several key differences. Meta-
Boss components expose pure business logic interfaces,
which are not polluted by technology-related “small
print” as occurs with enterprise beans. Moreover, the
designer of these components is not concerned about
which remote invocation mechanism, if any, will be used.
This means application components promise to perform
logical operations without disclosing where the operation
will be executed and how request and response signals
will be transmitted (if indeed such a need to transmit
exists).
 From the component implementer point of view, the
programming model has the following features:
• Each component can have an unlimited number of dif-

ferent implementations. Implementations may be of
the “proxy” kind or the “real implementation” kind. The
proxy implements some secondary feature and calls
another implementation of the same component to do
the actual work. The real implementation fulfills the
main business task of this component.

• Each component implementation consists of two class-
es: the component implementation class and the imple-
mentation factory class.

• The component implementation class must imple-
ment either the component or the java.lang.reflect.
InvocationHandler interface:

 – Component interface: This approach produces the
 “strongly typed” dedicated implementation, which

 can only be used as the implementation of this par-
 ticular component type. It’s more typically used for
 the real implementations. Listing 3 shows an example
 of this kind of implementation.

 – Generic java.lang.reflect InvocationHandler inter-
 face: This approach produces the “loosely typed”

 component implementation, which may be used as the
 implementation for many different component types. It’s
 more often used to produce reusable proxy implementa-
 tions. Listing 4 shows an example of the simple logging
 proxy implementation. (Listings 4–6 can be downloaded
 from www.sys-con.com/java/sourcec.cfm.)

 • The implementation factory class is a simple class that
must implement the JNDI standard javax.naming.spi.
ObjectFactory interface. The factory is only required to
implement a single getObjectInstance() method that
should return a new or cached component implementa-
tion. Listing 5 shows a simple factory that returns new
implementation instances every time. More complex
factories may cache implementation objects and return
them multiple times.

A Few Practical Examples
 Having created an application that follows this program-
ming model, what can now be done with it, and how can
the promised flexibility be used in practice?
 Figure 1 shows a simple way to deploy our application
where the component client and the component imple-
mentation code run in the same JVM without any addi-
tional mechanisms plugged in. It works well for the initial
deployment of a simple application, perhaps a basic JSP

application deployed entirely in a Java servlet engine such
as Tomcat. Our experience has shown that this configura-
tion is favored by business application developers because
it offers them a way to test the business logic without
the complexities of a full distributed deployment. In this
scenario, JNDI is configured to return the actual compo-
nent implementation as a result of the component lookup
operation.
 Figure 2 shows the introduction of the “invisible” archi-
tectural feature through the use of a special proxy. It works
well for pluggable security, logging, or caching mechanisms.
JNDI is configured to return an instance of the special proxy
instead of the actual component implementation. Once the
special proxy is invoked, it can do anything it likes before
and/or after invoking the actual underlying implementa-
tion. The process of invoking the underlying implementation
from the special proxy implementation is also based on JNDI
lookup. Thanks to this use of the JNDI lookup pattern inside
proxies, chains of proxies can be built. This means that the
proxies created are simple, single purpose classes.
 Figure 3 shows the introduction of the “invisible” remote
invocation mechanism, again through use of a special
proxy. In this case the special proxy consists of two parts:
client and server. At the client side JNDI is configured to
return the instance of a remote proxy client instead of
the actual component implementation. This proxy client
makes remote calls to the proxy server, which in turn
obtains the underlying actual implementation, again via

www.SYS-CON.com/JDJ32 December 2004

JNDI. Similar to the previous example,
this offers an opportunity to build
chains of proxies. As an example, the
logging proxy could be configured to
run on the client side, server side, or
even both sides of the remote invoca-
tion proxy.
 A key point to notice is that in
all the above examples the original
component implementation code and
the component client code were not
modified or rebuilt in any way.

Under the Hood
 The smarts to this approach are
hidden inside the JNDI provider
mechanism. JNDI is a well-supported
standard and many application serv-
ers provide a Java objects repository
facility with a JNDI interface, allowing
it to store and retrieve many dif-
ferent types of Java objects. These
repositories, however, are not quite
what is needed for this mechanism to
work. The unique feature required is
the ability to serve different kinds of
implementations of the same compo-
nent to different callers. This facility
is fundamental for proxy chaining,
where lookup from the client must
return a proxy implementation, but
lookup from the proxy must return
the “real” one or the proxy that is next
in the chain.
 This is why MetaBoss includes a
special JNDI service provider imple-
mentation. This implementation is
packaged in a single MetaBossCom-
ponentNamingProvider Java archive,
available from www.metaboss.com.
It can be used as a standalone library,
totally separate from the rest of the
MetaBoss suite. It has the following
features:
• A URL context factory implementa-

tion that looks after the component
scheme (i.e., all URLs starting with
component: prefix).

• It only supports lookup operations.
Most important, it doesn’t support
the bind operation. During lookup,
after the decision to return a cer-
tain implementation is made, the
JNDI Object Factory correspond-
ing to the chosen implementation
type is loaded and invoked “on the
fly” in order to obtain the instance
of this implementation.

• It uses the set of client/interface/
implementation mapping proper-
ties to understand which imple-
mentation needs to be returned
from the particular lookup
operation.

• It can search the set of directories
for JAR files with required imple-
mentation classes and dynamically
load them into the isolated class
loaders.

• As with every JNDI service provider,
it is in itself a plug-in, which can
easily be replaced without any
impact on the application code.
For example, one of our clients has
replaced this implementation with
the one that gets mapping instruc-
tions from the database instead of
system properties.

• As with most other JNDI service
providers, to plug it in you only
need to put it on the main applica-
tion class path.

 For interested readers who wish to
read more, I suggest downloading the
source from www.metaboss.com and
taking a look at it. I also recommend
studying the basics of how to build a
JNDI service provider before delving
into the source.

The Last Piece of the Puzzle – The
Implementation Mapping
 This article has shown how to
develop dedicated implementa-
tions of our components as well as
generic ones. Thus far we have not
really done much over and above
what is required when building a
well-architected solution. Now all
that is left (apart from downloading
the MetaBoss Component Naming
JNDI Service Provider plug in) is to
configure the mapping rules defining
“who gets what,” in other words
what kind of implementation or
chain of implementations has to be
served when the particular client or
family of clients is looking up the
particular interface. The “out of the
box” implementation supports read-
ing these mapping rules as a set of
provider-specific JNDI environment
properties. JNDI allows for these
properties to come from a number
of locations. However, in our ex-
perience we tend to favor “out of
code” locations such as applica-
tion resource files.
 The mapping entry is a key=
value pair where the key describes
the lookup operation (in terms
of who is looking up what) in the
form:

com.metaboss.naming.component.<interface

match expression>[/<client match expres-

sion>]

and the value describes what has to
be returned from the lookup in the
form:

<implementation match expression>[(<implem

entation match expression >[…])]

 In more detail:
• com.metaboss.naming.component:

A constant prefix used to distin-
guish particular provider-specific
properties.

• Interface match expression: A man-
datory expression used to iden-
tify single or multiple component
interfaces. It may contain wildcard
characters.

• Client match expression: An
optional expression identifying the
place in the code from which the
interface is being looked up. This
place in the code can be identi-

System Design

 Figure 2 “Invisible” architectural mechanism

Interface Interface

Logging, Caching,
Access control,

etc...

Client code
Implementation

Single Java Virtual Machine

33December 2004www.SYS-CON.com/JDJ

fied with any precision up to and
including the name of the method
from which the lookup has come.
It can contain wildcard characters.
The mapping entry where the client
match expression is not specified is
used for all clients not individually
configured.

• Implementation match expres-
sion: A mandatory expression
identifying the object factory to
be invoked in order to obtain an
implementation. As shown above,
these expressions can be chained
in order to define the chain of

implementations. Wildcards
are not allowed since one and
only one implementation must
match. However, a small number
of predefined keywords makes it
possible to reference parts of the
interface and/or client names in
this expression.

 Listing 6 shows a few sample
mapping entries. As you can see,
the mapping syntax offers consider-
able flexibility. The matching of the
particular lookup operation tries the
more explicit mapping entries (i.e.,

entries where the key is less vague)
before attempting the less explicit
ones.

Summary
 The mechanism described here
offers an architecturally neutral,
component-oriented approach to
writing the business applications. It
protects software development in-
vestment by separating business and
architectural concerns. While provid-
ing many features found in Aspect
Oriented Programming frameworks,
it stays within the boundaries of the
core JDK. I have found this mecha-
nism to be very useful and successful
on a number of complex enterprise
projects. It’s available from www.
metaboss.com and can be used with
or without the rest of the MetaBoss
suite.

References
• Raw JNDI knowledge: http://java.

sun.com/products/jndi/tutorial
• MetaBoss Component framework:

www.metaboss.com
• Burke, B. “It’s the Aspects: A new

paradigm.” JDJ, Vol. 8, issue 12.
• AspectJ, the Aspect Oriented

Programming framework, part of
Eclipse project: http://eclipse.org/
aspectj/

 Figure 3 “Invisible” distributed deployment

Remote client
implementation

Interface

Interface
Remote server
implementation

Client code

Client Java Virtual Machine
CORBA, RMI,
J2EE, SOAP,
sockets, etc...

Implementation

Server Java Virtual Machine

 Listing 1
01 package com.metaboss.sdlctools.services.codegeneration;
02
03
04 /** This component offers operations dealing with code genera-
 tion. */
05 public interface BSCodeGenerator
06 {
07 /** Naming URL of the component */
08 public static final String COMPONENT_URL = "component:/com.
 metaboss.sdlctools.services.codegeneration.BSCodeGenerator";
09
10 /** Generates code into the specified directory */
12 public void generate(String pDestinationDirectory) throws
 GenerationException;
13 }

Listing 2
01 import com.metaboss.sdlctools.services.codegeneration.
 BSCodeGenerator;
02 import com.metaboss.sdlctools.services.codegeneration.
 GenerationException;
03
04
05
06
07 try
08 {
09 // Get the context and lookup the component
10 javax.naming.Context lContext = new javax.naming.
 InitialContext();
11 BSCodeGenerator lGenerator = (BSCodeGenerator)lContext.
 lookup(BSCodeGenerator.COMPONENT_URL);
12
13 // Call the operation offered by the component

14 lGenerator.generate("c:/temp");
15 }
16 catch(javax.naming.NamingException e)
17 {
18 // Deal with the failure to find the component
19 handleException(e);
20 }
21 catch(GenerationException e)
22 {
23 // Deal with the component operation failure
24 handleException(e);
25 }
26
27
28

Listing 3
01 package com.metaboss.sdlctools.services.codegeneration.impl;
02
03 import com.metaboss.sdlctools.services.codegeneration.
 BSCodeGenerator;
04 import com.metaboss.sdlctools.services.codegeneration.
 GenerationException;
05
06 /** This is the default implementation of the component.*/
07 public class BSCodeGeneratorImpl implements BSCodeGenerator
08 {
09 /** Generates code into the specified directory */
10 public void generate(String pDestinationDirectory) throws
 GenerationException
11 {
12 // Do some useful code generation
13 }
14 }

www.SYS-CON.com/JDJ34 December 2004

ersonalization, a recurring requirement in most
corporate Web applications, can be a very effective
tool for streamlining Web applications and
enhancing the Web user’s experience. In many cases,

personalization and security requirements go hand in hand;
they can be dictated by corporate security principles and
regulations that exist in banks, insurance companies, and
any other organizations.

 This article targets enterprise architects and developers who
are willing to invest a little time to develop a set of easy-to-
use, reusable personalization components that are powerful
enough to meet the needs of many enterprise applications.
 The personalization components that we describe
here are based on rules declared and configured in an
XML file. Personalizing Web applications with these
components requires writing little or no Java code. Web
pages are personalized using JSP custom tags, shifting
the complex task of application personalization from the
J2EE developers to Web page designers.

Two Typical Examples
1. Personalized Customer Account Maintenance Application
 Suppose we’re developing a Web application for view-
ing and maintaining customer account information. The
account is defi ned by an account ID; customer information
such as name, address, and phone number; and billing
information such as a bank account.
 Billing information is typically classifi ed as sensitive
information. In our example we require that only a subset of
employees, account specialists and account managers, should
be permitted to view the banking information. However, for
operational reasons, all employees need to have access to
nonsensitive account data, such as customer name and ad-
dress.
 In addition, we require that account maintenance
functions, such as terminating or editing accounts,
should be available to account managers only.
 This example is typical for many applications that
provide role-based Web access to corporate data.

2. Personalized Shopping Site
 Here we want to develop a personalized shopping site

that recognizes high-value customers and rewards them
for their loyalty. At checkout we want to display a coupon
for 10% off the next order to customers who purchased
$1,000 worth of merchandise over the past 365 days (one
year).
 How would you develop these examples? Coding
the personalization rules directly into the applica-
tions should not be an insurmountable problem for
an experienced developer. However, in an agile enter-
prise rules change, sometimes very quickly. In the
shopping site example we want to have the flexibility
to change the promotion rules quickly, lowering the
$1,000 limit to $500, for example. If this rule is hard-
coded in your application, and especially if it’s used
several times in various parts of the application, you’ll
probably need to make substantial code changes, test
the application for consistency, repackage it, and rede-
ploy it on your application server. A framework based
on components that centralizes the management of
personalization rules and decouples these rules from
the rest of the application suddenly sounds like a good
idea.

Designing the Personalization Components
 When it comes to personalization, different applica-
tions can have different requirements. In general,
any user-related data can be used to personalize an
application. It’s important to recognize this early in our
design so we can construct components that are as gen-
eral as possible.
 The central abstraction in our design is a personaliza-
tion rule. We define a personalization rule as an object
that can be evaluated as true or false; the outcome of the
evaluation depends on user-related data and on the
rule’s configuration parameters. To allow for maximum
flexibility and to avoid the hard-coding of the rule param-
eters in the application, the rules need to be configured
externally.
 To simplify JSP development, we want to be able to
evaluate personalization rules on Web pages using
tags from a JSP custom tag library. At runtime the appear-
ance of the page will depend upon the outcome of the
evaluations.

Daniel Vlad, PhD, is a

senior consultant working

for Highmark in Pittsburgh,

Pennsylvania. Daniel leads

the development of the

corporate J2EE architectural

framework, develops

enterprise shared

components, and provides

guidance on the architecture,

design and implementation

of various applications.

 daniel.vlad@highmark.com.

by Daniel Vlad

P

by Daniel Vlad

P

PERSONALIZE YOUR
WEB APPLICATIONS

Reusable components can

eliminate personalization

code from your applications

Feature

35December 2004www.SYS-CON.com/JDJ

Reusable components can

eliminate personalization

code from your applications

Personalization Rules
 We represent a rule by an interface, Personalization-
Rule. At a minimum the interface needs to provide a
public method, boolean isRuleSatisfied(), which returns
true if the user’s data satisfy the rule, and false otherwise.
To enable the rule to make a personalization decision, we
need to supply it with user data, or at least with a mecha-
nism for retrieving this data from an external database
or directory. The HttpServletRequest provides us with
the means for identifying users; we can either invoke its
getRemoteUser() method (and rely on container-man-
aged security) or we can retrieve the user authentication
information stored in the request by third-party authori-
zation systems. The user ID can then be used to look up or
retrieve any user-related data from a database, LDAP, etc.
 In addition to the isRuleSatisfied() method, the Person-
alizationRule interface also contains setters/getters for the
rule name and rule properties.

public interface PersonalizationRule {

 public String getRuleName();

 public void setRuleName(String ruleName);

 public String getProperty(String name);

 public void setProperty(String name, String value);

 public boolean isRuleSatisfied(HttpServletRequest req);

}

 Implementations of this interface provide concrete be-
havior. Representing a rule by an interface gives us a great
deal of flexibility in implementing personalization rules
that match the requirements of the application.

XML Configuration File
 An XML configuration file with the following structure
is perfect for configuring personalization rules:

<personalization-rules>

 <rule name=" … " classname=" … ">

 <property>

 <name> … </name>

 <value> … </value>

 </property>

 … other properties …

 </rule>

 … other rules …

</personalization-rules>

 For each personalization rule the XML document
defines a rule name, and an implementation class name
followed by a number of configuration properties in a
name/value format.

Example: Personalization Based on Security Roles
 As an example that will be used in the implementation
of the Account Maintenance example, we can develop a
RolePersonalizationRule class (see Listing 1) that is evalu-
ated as true only if the user belongs to a supplied list of
security roles.
 To configure the rule we define a property named
“roles”; the value of the property is a comma-separated
list of security roles.

<rule name="rule1" classname="RolePersonalizationRule">

 <property>

 <name>roles</name>

 <value>role1,role2,role3</value>

 </property>

 …

 </rule>

 To code the class we need to implement the methods
specified in the PersonalizationRule interface. In the
isRuleSatisfied method we parse the comma-separated
list of roles using java.util.StringTokenizer, and check
each individual role using the isUserInRole() method of
the HttpServletRequest. If a match is found, we return
true. If the user doesn’t belong to any of the roles, we
return false.

 // Parse comma-separated list of roles

 String roleToCheck= null;

 StringTokenizer st=

 new StringTokenizer(rolesStr, ",");

 while (st.hasMoreTokens()) {

 roleToCheck= st.nextToken().trim();

 // Check each individual role

 if (req.isUserInRole(roleToCheck))

 return true;

 }

 return false;

www.SYS-CON.com/JDJ36 December 2004

 To complete the class we also need to implement the
getters and setters for the rule name and properties. The
properties can be stored in a Map instance.
 Helpful design advice: You can place the implementation
of the getter and setter methods into an abstract class and
have all your rule classes inherit these methods, so you don’t
have to code them more than once.

Parsing the Personalization XML File
 The parsing of the configuration file is performed by a
utility, PersonalizationRuleParser (see Listing 2). The parse
(String filename) method of this class is responsible for
parsing the personalization XML file, and instantiating and
configuring the rule objects.
 Developers have a multitude of choices when it comes to
parsing XML files. SAX and DOM are powerful and flexible APIs;
however, they require a fair amount of coding. Programmers
often utilize higher-level APIs to simplify their XML parsing
code. To parse the personalization XML file we use the Jakarta
Digester, a popular open source utility, very powerful in parsing
XML and populating Java objects from XML documents.

Factory for Rules
 We need to create a factory to manage the rules (see List-
ing 3). The factory invokes a method, initializeRules(), that
invokes the PersonalizationRuleParser utility to parse the
rules. The rules returned by the parser are cached in a static
Map variable, rules. The initialization method is synchro-
nized for thread-safety, thus guaranteeing that the parsing
occurs only once.

private synchronized void initializeRules()

 throws PersonalizationException {

 if (rules == null) {

 parser= new PersonalizationRuleParser();

rules= parser.parse(fileName);

 }

}

 The factory exposes a public method for retrieving a rule
by name, getRule(String ruleName). If no rule object is found
or if the object found does not implement the Personaliza-
tionRule interface, the method throws an exception.

Personalization Custom JSP Tags
 The classes created up to this point can already be used
to make personalization decisions programmatically.
However, to simplify the development of personalized JSP
pages we need to create a number of custom tags.

Custom JSP Tags to Display User Attributes
 A first class of tags that we can create contains tags
that display user information, such as username, name,
department, and address.
 To display the username we need to develop a User-
Tag that extends javax.servlet.jsp.tagext.TagSupport
and provides an implementation for the doStartTag()
method (see Listing 4). The method will invoke the get-
RemoteUser() method of the HttpServletRequest object
and it will write out the result using the JspWriter (see
Listing 5).
 The UserTag can be easily adapted to display other
user attributes besides the username. We can use the
username to look up the user data and print it out on the
JspWriter using the same technique as in the code fragment
in Listing 5. We can either create new tags for each user
attribute or, even better, reuse the UserTag by enhancing it
with an attribute to specify which user data to display.
 Helpful design advice: To improve application perfor-
mance and reduce the number of database or LDAP calls,
you can retrieve the user-related data once and store it in a
“User” object that can be placed in the user’s Http session.
Each rule has access to the request object and implicitly to
the session, therefore it can retrieve the user object, get the
user data, and use it in the evaluation of the rule.

Custom JSP Tags to Include or Exclude Web Content
 The second category of tags that can be defined consists
of tags for including (IncludeTag, see Listing 6) or exclud-
ing (ExcludeTag) Web content based on the outcome of
the evaluation of the rules.
 Both tags define a required attribute “rule” to specify
the name of the rule to be evaluated.
 The doStartTag() method of the IncludeTag contains
code to include the body of the tag when the specified
rule evaluates as true and to skip the body when the rule
evaluates as false.

public int doStartTag() throws JspException {

 if (isRuleSatisfied()) {

 return (EVAL_BODY_INCLUDE);

 } else {

 return (SKIP_BODY);

 }

}

Feature

 Figure 1 UML class diagram for the personalization components

37December 2004www.SYS-CON.com/JDJ

 The ExcludeTag is coded in a similar manner; the only
difference is the reversing of the return values in the
if/else statement.

Configuring and Using the Personalization Custom Tag Library
 To use the custom tags we need to register them in a tag
library descriptor (tld) file and declare the library in the JSP:

<%@ taglib uri="/WEB-INF/personalization.tld"

prefix="personalize" %>

 Using the tags is straightforward. To print the username:

<personalize:user/>

 To include JSP content (excluding is similar):

<personalize:include rule="MyRule">

 … Web content to be included here …

</personalize:include>

Using Personalization Rules Programmatically
 Personalization rules can also be used programmati-
cally, outside of the JSP pages. This comes in handy when
we need to make personalization decisions in a servlet
controller, for example, to redirect different groups of
users to different Web pages. To evaluate a personaliza-
tion rule programmatically, we just need to retrieve the
rule from the factory and call the rule’s isRuleSatisfied
method.

UML Class Diagram
 To summarize, Figure 1 shows a UML class diagram for
the personalization components we have just created.

Implementing the Personalized Account
Maintenance Example
 It’s time now to implement the examples described earlier
in the article with our personalization components; we will
start with the personalized account maintenance applica-
tion. To implement the application, in the data access layer
we retrieve the account information from a database and
populate an Account transfer object (JavaBean). The bean is
returned to the servlet controller (or Action, if you are using
Struts), which binds the Account bean to the HttpRequest
before forwarding the request to the JSP. The JSP retrieves the
bean and displays its attributes on the page.

Personalizing the Application
 The JSP needs to display the following Web content:
1. General account information that can be viewed by all

authenticated users.
2. Bank account information that can be viewed only

by account specialists and account managers. In the
personalization XML file we define a personalization
rule “ViewBankRule” of the RolePersonalizationRule
type (we need to specify the fully qualified name of the
implementation class):

<rule name="ViewBankRule"

 classname="com.pers.RolePersonalizationRule">

 <property>

 <name>roles</name>

 <value>Account Manager,Account Specialist</value>

 </property>

</rule>

 In the JSP we need to pass the rule to the personalize:
include tag for evaluation:

<personalize:include rule="ViewBankRule">

 bank information here

</personalize:include>

3. Account maintenance functions that should be displayed
to account managers only. Similarly, we define a rule
“EditAccountRule”; we configure the “roles” properties
with the value “Account Manager”; and we surround the
Web content with the personalize:include tag:

<personalize:include rule="EditAccountRule">

 account maintenance functions here

</personalize:include>

4. Finally, to display a personalized greeting in the
JSP page, we use the user tag:

Welcome <personalize:user />

www.SYS-CON.com/JDJ38 December 2004

Container-Managed Security Configuration
 All personalization rules in this example are
based on security roles. We need to configure the
container-managed security environment for the
Web application.
 In the web.xml deployment descriptors we have to
define the following security-related information:
1. Security roles needed by the application: employee,

account specialist, and account manager.
2. Security constraints to exclude nonemployees from

accessing the application and prohibit nonmanagers
from accessing the URIs associated with the account
maintenance actions.

3. Login configuration for the Web application, for exam-
ple, basic authentication.

 The last piece of the security configuration puzzle is to
configure the Web container (Tomcat in our case) to use a
“database” of usernames/passwords (security realm) for user
authentication. To keep it simple, we use MemoryRealm, an
in-memory representation of a database of usernames/pass-
words provided by Tomcat for development and test purpos-
es. At runtime, Tomcat loads the usernames and passwords
from the MemoryRealm XML configuration file (tomcat-us-
ers.xml) in memory, and uses this data to authenticate users.

Running the Application
 After logging into the application and passing the secu-
rity constraints enforced by the Web container, the user
views a personalized application (see Figures 2–4).

Implementing the Personalized Shopping Site Example
 To be able to selectively display the 10% discount
coupon, we can define a rule named displayCoupon and
implement it using a personalization rule class HighVal-
ueCustomerRule. The minimum purchase amount needed
for the promotion to kick in and the time period in days
are entered as configuration parameters in the XML file:

<personalization-rules>

 <rule name="displayCoupon"

 classname=" HighValueCustomerRule ">

 <property>

 <name>minOrders</name>

 <value>1000.00</value>

 </property>

 <property>

 <name>period</name>

 <value>365</value>

 </property>

 </rule>

</personalization-rules>

 In the isRuleSatisfied method of the HighValue-
CustomerRule we get the userId (HttpServletRequest.
getRemoteUser()) and use it to retrieve the total purchase
amount for the specified period from the order database
(the amount can also be retrieved by the controller in
advance and cached in the user object). In the isRuleSatis-
fied we return true if the total is larger than the minOrder,
and false if it isn’t.
 In the JSP we need to add the following:

<personalize:include rule="displayCoupon">

</personalize:include>

 The rules are now easy to maintain. If we decide to lower
the minimum purchase amount to $500 instead of $1,000, all
we need to do is update the value in the personalization.xml
file. Even radical changes that require replacing the entire
HighValueCustomerRule with a different rule can be easily
implemented when working within this framework.
 If the same rules are used multiple times in an application,
centralizing the configuration also ensures the consistency
of the application logic.

Summary
 Personalizing Web applications in a consistent man-
ner can be challenging. Vendor personalization engines
can be very powerful; however, they can also be extremely
expensive and difficult to work with.
 For most corporate Web applications, with the notable
exception of portals, CRM, and other similarly complex
applications, you might be better off building your own
reusable personalization components or framework. The
components shown here could provide a solid foundation
for your personalization projects. Give them a try.

References
• Apache Jakarta Digester: http://jakarta.apache.org/com-

mons/digester/
• Container-managed security, see the Servlet 2.3 specifica-

tions: www.jcp.org/aboutJava/communityprocess/final/
jsr053/

• Tomcat: http://jakarta.apache.org/tomcat/index.html
• Tomcat 4.1 MemoryRealm configuration: http://jakarta.

apache.org/tomcat/tomcat-4.1-doc/realm-howto.
html#MemoryRealm

Feature

 Figure 2 Account Details page

rendered to an Account

Manager

 Figure 3 Account Details page

rendered to an account

specialist

 Figure 4 Account Details page

rendered to an

employee

UML class diagram

for

the personalization

components

Account Details

page

rendered to an

Account Manager

39December 2004www.SYS-CON.com/JDJ

Listing 1:
public class RolePersonalizationRule
 implements PersonalizationRule {

 private String ruleName;
 private Map properties= new HashMap();

 public RolePersonalizationRule() {}

 public String getRuleName() {
 return ruleName;
 }

 public void setRuleName(String ruleName) {
 this.ruleName= ruleName;
 }

 public String getProperty(String name) {
 return (String) properties.get(name);
 }

 public void setProperty(String name, String value) {
 properties.put(name, value);
 }

 public boolean isRuleSatisfied(HttpServletRequest req){
 String rolesStr= getProperty("roles");
 if (rolesStr == null) return false;
 // Parse the comma-delimited list of roles
 String roleToCheck= null;
 StringTokenizer st=
 new StringTokenizer(rolesStr, ",");
 while (st.hasMoreTokens()) {
 roleToCheck= st.nextToken().trim();
 // Check each role.
 if (req.isUserInRole(roleToCheck))
 return true;
 }
 return false;
 }

}

Listing 2:
public class PersonalizationRuleParser {

 private Map rules= new HashMap();

 public void addRule(PersonalizationRule rule) {
 String ruleName= rule.getRuleName();
 rules.put(ruleName, rule);
 }

 public synchronized Map parse(String fileName)
 throws PersonalizationException {

 // instantiate Digester and disable XML validation
 Digester digester= new Digester();
 digester.setValidating(false);

 // Push this object to the Digester's object stack

 // making its methods available to processing rules.

 digester.push(this);

 // instantiate the PersonalizationRule object using

 // the classname attribute

 digester.addObjectCreate(

 "personalization-rules/rule",

 "PersonalizationRule", "classname");

 // set the rule name

 digester.addSetProperties(

 "personalization-rules/rule",

 "name", "ruleName");

 // Set the rule properties

 digester.addCallMethod(

 "personalization-rules/rule/property",
 "setProperty", 2);
 digester.addCallParam(
 "personalization-rules/rule/property/name", 0);
 digester.addCallParam(
 "personalization-rules/rule/property/value", 1);

 // call 'addRule' method when the next
 // 'personalization-rule' pattern is seen
 digester.addSetNext(
 "personalization-rules/rule", "addRule");

 // load file and start the parsing process
 try {
 ClassLoader classLoader=
 this.getClass().getClassLoader();
 URL url= classLoader.getResource(fileName);
 if (url != null) {
 InputStream in= url.openStream();
 digester.parse(in);
 in.close();
 }
 } catch (IOException e) {
 e.printStackTrace();
 throw new PersonalizationException(
 "I/O errors while parsing the xml file");
 } catch (SAXException e) {
 e.printStackTrace();
 throw new PersonalizationException(
 "SAXException while parsing the xml file");
 }
 return rules;
 }
}

www.SYS-CON.com/JDJ40 December 2004

Listing 3:

public class PersonalizationRuleFactory {

 public static final String fileName=

 "personalization.xml";

 private static Map rules;

 private PersonalizationRuleParser parser;

 public PersonalizationRuleFactory()

 throws PersonalizationException {

 initializeRules();

 }

 private synchronized void initializeRules()

 throws PersonalizationException {

 if (rules == null) {

 parser= new PersonalizationRuleParser();

 rules= parser.parse(fileName);

 }

 }

 public PersonalizationRule getRule(String ruleName)

 throws PersonalizationException {

 if (rules.containsKey(ruleName)) {

 Object o= rules.get(ruleName);

 if (o instanceof PersonalizationRule) {

 return (PersonalizationRule) o;

 } else {

 throw new PersonalizationException(ruleName

 + " does not implement PersonalizationRule");

 }

 } else {

 throw new PersonalizationException(

 ruleName + " not found");

 }

 }

}

Listing 4:

public class UserTag extends TagSupport {

 public int doStartTag() throws JspException {

 HttpServletRequest request=

 (HttpServletRequest) pageContext.getRequest();

 String userid= request.getRemoteUser();

 // Print the userid to the page output writer

 JspWriter writer= pageContext.getOut();

 try {

 writer.print(userid);

 } catch (IOException e) {

 throw new JspException(e.toString());

 }

 // Continue processing this page

 return (EVAL_BODY_INCLUDE);

 }

}

Listing 5:

public int doStartTag() throws JspException {

 HttpServletRequest request=

 (HttpServletRequest) pageContext.getRequest();

 String userid= request.getRemoteUser();

 // Print the userid to the page output writer

 JspWriter writer= pageContext.getOut();

 try {

 writer.print(userid);

 } catch (IOException e) {

 throw new JspException(e.toString());

 }

 // Continue processing this page

 return (EVAL_BODY_INCLUDE);

}

Listing 6:

public class IncludeTag extends TagSupport {

 private String rule;

 public String getRule() {

 return rule;

 }

 public void setRule(String rule) {

 this.rule= rule;

 }

 public int doStartTag() throws JspException {

 if (isRuleSatisfied()) {

 return (EVAL_BODY_INCLUDE);

 } else {

 return (SKIP_BODY);

 }

 }

 public int doEndTag() throws JspException {

 return (EVAL_PAGE);

 }

 public void release() {

 super.release();

 rule= null;

 }

 private boolean isRuleSatisfied()

 throws JspException {

 PersonalizationRule ruleObj= null;

 if (rule == null) {

 throw new JspException(

 "Invalid use of the IncludeTag. rule=null");

 }

 try {

 PersonalizationRuleFactory factory=

 new PersonalizationRuleFactory();

 ruleObj= factory.getRule(rule);

 } catch (PersonalizationException pe) {

 throw new JspException(

 "Error while retrieving the rule " + rule, pe);

 }

 HttpServletRequest request=

 (HttpServletRequest) pageContext.getRequest();

 return ruleObj.isRuleSatisfied(request);

 }

}

Feature

www.SYS-CON.com/JDJ42 December 2004

recently had the opportunity to
talk with many Java users about
the current release and their gen-
eral experiences with the platform.

One of those developers told me that
he didn’t use J2SE but his J2EE VM
sometimes caused problems.
 Now most of you know that there is
no such thing as a J2EE JVM. From my
own experience with J2EE application
servers, many do a good job hiding
this from you. It can be difficult to
work out which version of J2SE you
are using, let alone know that J2SE is
behind the scenes.
 In this issue we are focusing on
J2EE. If you are a core J2SE developer,
there are some great tips and tech-
niques that apply equally to J2SE and
J2EE.
 As a quick refresh, the J2SE platform
contains the Java runtime and many
of the core libraries that are used in
your J2EE application. The Java run-
time also contains client-side classes
such as Swing. If those classes are not
referenced by your application (which
is normally the case), then they’re
not loaded at runtime. To compile
Java programs use the javac compiler,
which can be redistributed with the
Java runtime and is also available in
the Java developer kit.
 One of the key technologies is the
core XML library. In J2SE 5.0, the JAXP
1.3 library is bundled and includes
support for XML 1.1, DOM Level 3,
and SAX 2.0.2.
 One new library in J2SE 5.0 that
should be familiar to you is the
addition of the Java Management
Extension, JMX. JMX has been used
in J2EE to monitor and manage J2EE
applications using MBeans. The JMX

framework has been extended in
J2SE 5.0 with a remote interface and
also has some system MBeans and a
mini MBeanServer that can be used
to monitor low memory conditions.
This same monitoring information is
published via the SNMP protocol as
well.
 The other side of monitoring is ap-
plication profiling. The core technol-
ogy here has been JVMPI, the Java
profiling interface. JVMPI is still sup-
ported in J2SE 5.0 but is superseded by
the new JVM TI tools interface, which
provides finer-grained and less intru-
sive profiling. Your existing profiling
tools will require updates to support
the JVM TI interface, but the benefits
of improved profiling will repay the
investment in newer tools.
 The support for network-aware
distributed objects is also provided in
J2SE using technologies such as RMI,
JNDI, and CORBA. There have been
minor increments in J2SE 5.0 for each
of these technologies. One change that
makes J2EE developers’ coding a little
easier is that RMI no longer needs a
separate stub creation step.
 The Java language changes, of
course, apply to J2SE and J2EE and
the same javac compiler is used to
build both types of applications. Later
releases of J2EE will be able to take
advantage of features like metadata
to automate many tasks, including
generating deployment descriptors.
 For those developers who use
JavaServer Pages, the newer javac
compiler will work as before. There
was a proposal to increase the maxi-
mum method length due to some side
effects from some of the early JSP
implementations. The 64K restriction

still exists but modern JSP compilers
no longer run into that barrier.
 Another area that is easy to overlook
is database access. The JDBC frame-
work is again delivered in J2SE. In J2SE
5.0 the addition of implementations
for disconnected rowsets allows you
to pass rows from your database and
manipulate them without needing to
maintain a live database connection.
This technology even allows you to
convert the database results to XML,
provide updates using XML, and then
resynchronize those changes at a later
time.
 It shouldn’t be a surprise that the
Java runtime is also responsible for
the compilation of bytecodes and the
threading framework. Many exist-
ing J2EE application servers provide
support for a thread pool. In J2SE 5.0
the concurrency library also provides
a choice of user space thread pools,
which are portable across application
servers.
 J2EE application servers will also
be able to provide more control over
worker thread tasks by taking advan-
tage of the new future tasks.
 What does this mean for J2EE
application developers? Well, regard-
less of the frameworks you use, J2SE
5.0 is going to bring two waves of
improvements.
 The first wave is updates to the li-
braries, such as XML, that are used by
J2EE in the core platform. The second
wave is to then exploit the advantages
of the new features by the J2EE 5.0
platform and its components. I’m sure
you’ll agree that there is plenty to look
forward to whether you consider your-
self a J2EE developer, J2SE developer,
or both.

Core and Internals Viewpoint

Calvin Austin
Core and Internals Editor

Under the Hood of a
J2EE Application Server

I

A co-editor of JDJ since

June 2004, Calvin Austin

is the J2SE 5.0 Specification

Lead at Sun Microsystems.

He has been with Java

Software since 1996 and

is the Specification Lead

for JSR-176, which defines

the J2SE 5.0 (“Tiger”)

release contents.

calvin.austin@sys-con.com

It shouldn’t be a surprise that the Java runtime is also responsible
for the compilation of bytecodes and the threading framework”“

www.SYS-CON.com/JDJ44 December 2004

few weeks ago Agitar Software
announced that Kent Beck
had joined their team. I sat
down and talked with Alberto

Savoia, CTO, and Kent Beck, Agitar
Fellow, to find out what prompted the
move and what Agitar is up to that is
so exciting.

JDJ: Kent and Alberto, why each other?

Beck: I think the primary motiva-
tion for the move is that Agitar is
supporting very similar things that I
have been working on for a number
of years. You have a kind of lever-
age from working with a commercial
company that you just don’t have as
an individual. The technology is also
very interesting.
 For 50 years it has been okay for
the IT group to be sort of closed and
not allow the business side to see
what is going on until the end. The
trend today is toward more transpar-
ency. Developer testing is one form
of transparency or accountability. In
the past business wrote a check and
IT delivered something, but what
was delivered was not always suf-
ficient. Developer testing (and thus
Agitator and Agitar) is one means
of raising the level of transparency
and accountability. The other thing
is that developer testing makes the
developer’s job better; it lets you
design better; it lets you do your job
with confidence; and it lets you sleep
better.

Savoia: Agitar probably would not
exist if not for Kent and his contribu-
tions of XP and JUnit. Since XP is
now cool, testing is now by inference
cool. I always thought that developer
testing is something we should have
been doing all along and XP has
made it legitimate for developers to
test. More important, it is one thing
to just say “you should be doing test-
ing”; it’s another thing entirely to

give developers a tool in the form
of JUnit to help them do developer
testing.
 It’s great to have Kent since he is the
one who started this whole thing. Also,
as we go forward in making developer
testing ubiquitous, Kent’s vision is
going to be extremely influential in the
way that we evolve Agitar.

JDJ: Is developer testing a fad?
 Developer testing is something that
should have been done from day one.
For whatever reason developers abdi-
cated this responsibility. Now with XP
and JUnit, developer testing is making
a comeback, but should have always
been here.
 Over the past year or so I’ve talked
to literally hundreds of developers
and development managers and
none of them could make a good ar-
gument for not doing developer test-
ing. The thing that comes up though
is something I call the developer test-
ing paradox, even though everyone
thinks that developer testing is good.
It’s like motherhood and apple pie
– everyone thinks it’s a good idea but
it’s not nearly as widely adopted as it

should be. This is the paradox: Why
is something so good practiced so
infrequently? I believe it’s because
there are insufficient tools and
processes to make developer testing
more efficient and effective, and
without these processes and tools it
will be hard for developer testing to
become as widespread as we believe
it should be.
 The other benefit we feel that
you get out of developer testing is
early and frequent feedback on your
design. The first-order effect is great,
a reduction in bugs, but the second-
order effect of having better overall
designs is probably even more valu-
able. With developer testing you get
early feedback on the coupled (or not)
nature of your design. If your design
is highly coupled, you’ll have complex
setup and teardown. If your design is
loosely coupled, you’ll have a much
easier time testing and a more flexible
system.

JDJ: Is the developer testing that does
exist sufficient?
 We have some empirical data that
suggests that most IT shops that im-

Q&A

Interview by Bill Dudney

Developer Testing Is ‘In’

A

Bill Dudney, JDJ ’s Eclipse

editor, is a senior consultant

with Object Systems Group.

He has been doing Java

development since late 1996

after he downloaded his first

copy of the JDK. Prior to OSG,

Bill worked for InLine Software

on the UML bridge that tied

UML Models in Rational Rose

and later XMI to the InLine

suite of tools. Prior to

getting hooked on Java,

he built software on

NeXTStep (precursor to Apple’s

OS X). Bill has roughly 15 years

of distributed software

development experience

starting at NASA building

software to manage the mass

properties of the space shuttle.

You can read his blog at http://

jroller.com/page/BillDudney.

billdudney@sys-con.com

An interview with Alberto Savoia and Kent Beck

Kent Beck, Agitar FellowAlberto Savoia, CTO

www.SYS-CON.com/JDJ

plement developer testing see around 30%
of their developers become “test infected.”
Even if management decides to stop the unit
testing effort, these developers would con-
tinue to do developer testing because they
have realized the benefits.
 The other 70% must have been immu-
nized in their childhoods; the minute the
pressure is off to build unit tests, they aban-
don developer testing and go back to writing
lots of code with little testing.
 The group who writes tests tends to write
good tests, and their tests fail. Meaning that
the good tests will find and prevent bugs. On
the other hand, the group of developers who
don’t get test infected, write tests that almost
always pass. These tests usually don’t find
bugs.

JDJ: Is this why we all too often see a system
with a large set of developer tests fail when it’s
delivered to a testing group?
 Exactly, this problem has a name: the pes-
ticide paradox. Your code evolves to pass the
unit tests; if you don’t continue to increase
the “dose” of the pesticide (the tests), pretty
soon bugs adapt to the tests that you do
have.

JDJ: Is developer testing increasing in the enter-
prise? What are you seeing among your clients?
 The rarest of all is the company that de-
cided to do developer testing, trained their
whole team, and have been doing developer
testing for quite a while, and are seeing suc-
cess with this method. Usually these teams
are led by people who are test infected;
thus developer testing becomes part of the
culture.
 The largest group comprises companies
that realize that testing is the correct thing to
do. But when they try to implement they run
into a set of problems. The primary one is
that it takes a lot of time to test code and they
don’t know where that time will come from.
 Finally, there are the companies that want
to do developer testing but they just don’t
know where to start. Perhaps there are a few
developers who are test infected but it’s not
something that is part of the team. I have
yet to meet a team that says, “Hey, Alberto,

we have two weeks with nothing to do. We
were thinking of trying out developer test-
ing.” Developers always have something
to work on, something to do. Moving to a
developer-testing mindset is often difficult
to do.

JDJ: In what ways does Agitator help solve these
issues that you are seeing?
 The main problem that I encountered
when trying to instigate developer testing
at Google was the time it takes to write the
tests. If developers have to write 300–400
lines of test code to test 100 lines of source
code, even though it’s the right thing to do,
they are making a large investment. The way
that Agitator helps with this is by recogniz-
ing that much of testing is combinatorial in
nature. For example, every if statement in
your code needs two tests written. So writ-
ing tests by hand is great for particular
test cases that you have thought about.
Then you want to do exploratory testing
and think about all the things that could
happen.
 I don’t believe that code is the correct
metaphor for testing. For instance, just
like a spreadsheet is the correct metaphor
for getting a bunch of calculations done or
generating a graph. You don’t care about all
the stuff that goes on under the hood. You
want to give the spreadsheet the input data,
a list of formulas, and then have the result.
A spreadsheet raises the level of abstraction
to the things that you care about. Similarly
Agitator raises the level of abstraction of
the testing tasks to the components that are
important. Those components are the test
data and the assertions. The unnecessary
distraction of the framework code is below
the level of abstraction.
 Along those same lines Agitator lowers
the barrier to entry for developer testing
thus making developer’s lives more produc-
tive and more fun. In addition the tool
also gives a means to measure what is
going on inside the project. If you look at
what everyone on the team is doing with
Agitator and rolled that, you have a much
more precise view of what is going on
inside.

Right now developer testing seems to be the exception
rather than the rule. Our goal is to reverse that in the

next three to four years”
“

www.SYS-CON.com/JDJ46 December 2004

JDJ: What level of metrics is the Agitator
able to provide?
 We have spent a lot of time think-
ing about metrics. In fact our Dash-
board product is all about metrics,
and we have learned a lot of valuable
lessons. When you want to institute
developer testing, it’s important to
focus on positive metrics, in other
words metrics that go up with better
testing. Let me give you an example
of one of the metrics reported by the
Dashboard; we call it “Test Points.”
Whether you use JUnit or Agitator,
every assert statement, for example,
asserting that add(2,2) returns 4 is
a test point. That is a metric that
is positive. As that number grows,
we can feel good. This metric is in
contrast to traditional metrics like
“the number of bugs found.” If you
are doing developer testing, presum-
ably you won’t find a lot of bugs with
the tests because the tests help you
prevent bugs in the first place.
 Another metric that we use is
percentage of classes or methods
that have tests. Here the goal is very
simple: have a test class for each
class. There should be symmetry
here. Measure how this metric grows
as you achieve the goal that you
have set for your group, then you
can start to add a test for each meth-
od. As you achieve the goal you have
for the number of methods touched
by a test, you can get even more
aggressive. However, this positive
metric gives the team something
positive to focus on and move
toward. Instead of measuring your
failures, you have favorable measure-
ments to look at.

JDJ: Do you have any metrics regarding
the use of Agitator over time? Something
like, before developer testing there were
so many bugs per 1,000 lines of code
and after using developer testing the
bug count fell to fewer bugs per 1,000
lines.
 We have been doing developer
testing on Agitator from the begin-
ning and we currently have more than
20,000 test points for Agitator that
run several times a day. It typically
discovers a few bugs, and when we do
major open-heart surgery on the code
it finds many problems that we then
fix.

 Since we have been doing devel-
oper testing from the beginning,
it’s hard to offer a contrast. I can,
however, point you and your readers
to a recorded Webinar on our Web
site (www.agitar.com) in which
Jayson Minard of Abebooks.com
talks about their use of Agitator. In
a recent quarter they experienced
zero downtime because of their use
of developer testing and the Agitator.
But even so, I still tend to go by gut
feelings. The fact that I have 25,000
tests keeping the code clean and, if
something goes wrong, I get red
flags all over the place, makes me
feel a lot better than a particular
set of numbers.

JDJ: Do you see the metrics generated by
the Dashboard being misused, or is the
test-point metric harder to misuse than
coverage alone.
 I believe in code coverage, but
coverage without assertions is
like testing a calculator by pushing
the buttons for three hours and
never looking at the display. I can
say that the calculator did not
catch on fire but I can’t say if it
functioned correctly. For example,
when an application starts up,
you could see as much as 30%
code coverage, but you have not
discovered that it stated correctly
since just starting does not run any
assertions. What we do is create a
mapping between code coverage
and assertion coverage. The theory
is that a method is “covered,” but
if there are no assertions for that
method, the coverage does not get
counted in the test points metric.
Sure it is possible that the method
has been tested indirectly, but with-
out a direct test I can’t relax and
sleep well at night until I have that
level of testing. Furthermore if your
code cannot be tested at the class
and method level your code might
not be unit testable and therefore
has some likely coupling problems.

JDJ: How does the Agitator fit into a
typical developer process?
 We ran an experiment (document-
ed at www.developertesting.com)
where we did a project test first using
JUnit. The interesting thing is that
when you do this kind of testing, the
developer tends to focus on the posi-
tive tests, i.e., 2 * 2 is in fact evaluating
to 4, which is natural. However, we al-
ways fired up Agitator to help us think
about the corner cases that we didn’t
consider during our typical testing.
We found two interesting results. We
expected the first; namely that the
corner cases that Agitator found were
indeed busted, e.g., if I pass a string
that is too long/short to this method,
the code breaks. The other outcome
was that Agitator forced us to think
through further refactorings that
we did not previously consider. This
process is documented in the series of
articles on this project at developert-
esting.com (Agitator-driven refactor-
ing). Using JUnit we thought about
“localized” refactorings on particular
classes, but in bringing in agitation
we saw areas where we should do
wider refactorings. It showed us more
of the global-level dependencies that
were not readily apparent without the
agitation process.

JDJ: Where are you headed with the tool
set? What’s next?
 Our vision and one of the reasons
we hired Kent Beck is that right now
developer testing seems to be the
exception rather than the rule. Our
goal is to reverse that in the next
three to four years. Our product goal
is to make Agitator more and more
integrated with the development pro-
cess to assist in the movement toward
a major shift into developer testing in
the industry.
 We are also developing new and in-
teresting ways to display the mountain
of information that we gather with the
Dashboard. For example, you can see
“risky” classes. Risk is a combination
of the complexity of the class and the
dependencies on that class. With the
Dashboard we are headed to more
summarization of the information
we gather as well as giving people
some data on a successful project so
that they have something to compare
against.

Q&A

Since XP is now cool,
testing is now

by inference cool”
“

47December 2004www.SYS-CON.com/JDJ

www.SYS-CON.com/JDJ48 December 2004

hile at lunch with col-
leagues recently I overheard
four very able Java devel-
opers swapping horror

stories of the kit they’d cut their teeth
on as junior programmers. One had
used a Sinclair ZX-81 with 1K of RAM
and a black and white TV and a tape
recorder in lieu of a hard drive. Things
were so bad with the memory that the
screen buffer was used to store pro-
gram data. That story was trumped by
tales of a Commodore 64 where after it
was discovered that the built-in hard
drive had its own processor, it was
used to offload program work to create
true symmetric multiprocessing on a
box that was never designed for this.
 Both stories came from wizened
old developers convinced they’d won
the mantle of “hardship programming
in my youth.” Ironically the college
kid in the group played the five-ace
hand with tales of taking a games
console and stripping it down to a
Unix box and then running it as his
home server. Apart from feeling I was
observing a 21st century version of
Monty Python’s “Four Yorkshiremen”
sketch (www.phespirit.info/montypy-
thon/four_yorkshiremen.htm), I felt
slightly worried by the allegories being
drawn and implied by the dialog.
 Without necessarily intending
it, two messages were being con-
veyed. One was that you had to
have struggled with basic tools and
underpowered hardware to get a job
done as a necessary rite of passage on
the path to becoming a true program-
mer, and the second was the syllogism
that if you continue to use sticks and
stones to program you are somehow a
superior programmer than someone
who doesn’t.
 I encounter quite a lot of the latter
attitude in my day job where I develop
tools whose purpose is to help people
write Java GUIs. When talking to us-
ers, some of them enjoy the obvious
benefits of being able to preview their

screen as they write it and handle
components by selecting and manipu-
lating them in WYSIWYG touchy-feely
viewers. Others will rightly point out
that the complexity of their GUI is
beyond what the builder can cope
with and that’s a good reason not use
it. Others seem almost threatened by
what is basically a fairly entrenched
idea of a tool creating code for you
and they’ll come up with every excuse
possible why they shouldn’t use it.
Arguments vary from the code not
conforming to their particular style,
which, apart from often degenerating
into an academic argument about how
fields should be named or methods
structured, also shows a certain
intransigence against being able to
adapt to a new style. It exhibits a bel-
ligerent and generally frowned upon
trait in programmers to be inflexible
when dealing with code authored by
others without feeling the compunc-
tion to rewrite it.
 The favored vestige of the non-IDE
folks is often to drop down to a text
editor such as vi or Emacs and gain
some kind of Luddite satisfaction from
editing raw files and firing off build
scripts. I used to admire people who
enjoyed coding with such tools similar
to the way you might enjoy listening
to classical music played on period
instruments. After a while, however, it
just starts to sound flat and hollow and
in denial of all that has been learned
since. The problem is being able to
recognize the genuine aficionado of
someone who is using his favorite
antique editing experience because it
genuinely makes him productive and
able to focus on his job without help-
ful wizards and code assist, versus the
one who is trying to copy the master
and thereby fake credibility that mas-
querades his inability to focus on his
job.
 At a recent presentation I was giving
on an IDE feature that makes it easier
to write code, I had to deal with a

heckler who told me how superior vi
was and how we couldn’t deal with his
particular key bindings. The irony was
that he wasn’t from the wizened pen-
guin bumper-sticker brigade who are
the stereotypes of such attitudes – he
was a fresh-faced, recent college grad
and had brought his bellicose attitude
almost as a badge of honor to parade.
 Let’s take cars, for example – my
attitude is that when they break I take
them to the mechanic; what’s fun isn’t
so much tinkering with the engine my-
self and gaining some kind of machis-
mo pride in doing so, it’s the journeys
I take in it and what I do when I arrive.
Likewise with writing software – the
purpose is to create a good user expe-
rience for someone else who wants to
solve a particular problem in a more
efficient way. I once had to explain to
a customer why we were late shipping
a particular software release and he
replied that we were just polishing the
inside of a tin can and he didn’t care.
He was right – we were upgrading op-
erating system releases and migrating
to a new language version mid-release
cycle. However, there was no business
value to it and we’d just taken our eye
off the target and onto our navels.
 Is the problem with software and
tooling one of a master craftsman
with his favorite chisel and simply
that people are reluctant to change
something that makes them most
productive, or is it just that people
have a built-in desire to belong to a
herd and gain social acceptance from
their tribal peers from where they can
collectively mock progress and other
languages and technology changes
as being for the folks on the other
team? Is the super-league of program-
mers occupied by folks who take
apart game boxes and have wireless
networks in their kitchen, or is it by
those who would rather play some
fun games on the box it was designed
for and then enjoy a nice meal in the
kitchen afterward?

Desktop Java Viewpoint

Joe Winchester
Desktop Java Editor

Sticks and Stones

W

Joe Winchester is a

software developer

working on WebSphere

development tools for

IBM in Hursley, UK.

joewinchester@sys-con.com Co
py

ri
gh

t
©

 2
00

4
Ca

no
o

En
gi

ne
er

in
g

AG
. A

ll
R

ig
ht

s
Re

se
rv

ed
.

Ja
va

 a
nd

 a
ll

Ja
va

-b
as

ed
 t

ra
de

m
ar

ks
 a

re
 r

eg
is

te
re

d
tr

ad
em

ar
ks

 o
f S

un
 M

ic
ro

sy
st

em
s,

 In
c.

Rich Thin Clients for J2EE

Canoo Engineering AG http://www.canoo.com/ulc/

D o w n l o a d y o u r f r e e t r i a l t o d a y !

� S e r v e r- s i d e p r o g r a m m i n g m o d e l :
develop scalable web applications for thousands of users
as simply as stand-alone Swing applications.

� S u p e r i o r s e c u r i t y :
no application code is executed on the client, nothing
is stored in a browser cache.

� A p p l i c a t i o n d e p l o y m e n t o n s e r v e r :
a lean Java presentation engine on the client serves
any number of applications.

� P u r e J a v a l i b r a r y :
use your favorite IDE and get add-on tools for visual editing,
client/server simulation, and load/performance testing.

UltraLightClient offers
a server-side API to Swing,
providing rich GUIs
for J2EE applications.

49December 2004www.SYS-CON.com/JDJ

Co
py

ri
gh

t
©

 2
00

4
Ca

no
o

En
gi

ne
er

in
g

AG
. A

ll
R

ig
ht

s
Re

se
rv

ed
.

Ja
va

 a
nd

 a
ll

Ja
va

-b
as

ed
 t

ra
de

m
ar

ks
 a

re
 r

eg
is

te
re

d
tr

ad
em

ar
ks

 o
f S

un
 M

ic
ro

sy
st

em
s,

 In
c.

Rich Thin Clients for J2EE

Canoo Engineering AG http://www.canoo.com/ulc/

D o w n l o a d y o u r f r e e t r i a l t o d a y !

� S e r v e r- s i d e p r o g r a m m i n g m o d e l :
develop scalable web applications for thousands of users
as simply as stand-alone Swing applications.

� S u p e r i o r s e c u r i t y :
no application code is executed on the client, nothing
is stored in a browser cache.

� A p p l i c a t i o n d e p l o y m e n t o n s e r v e r :
a lean Java presentation engine on the client serves
any number of applications.

� P u r e J a v a l i b r a r y :
use your favorite IDE and get add-on tools for visual editing,
client/server simulation, and load/performance testing.

UltraLightClient offers
a server-side API to Swing,
providing rich GUIs
for J2EE applications.

www.SYS-CON.com/JDJ50 December 2004

or those involved in the maintenance and program-
ming of databases, object-relational (O/R) map-
ping and TopLink have been almost synonymous
for 10 years. An innovator in the ORM space for an
entire decade, TopLink was started in 1994 as an

independent company and was acquired by Oracle from
the defunct WebGain in June of 2002. As Oracle customers
have expressed their needs in this area, TopLink has become
integrated not just into Oracle’s app server but also with
JDeveloper, the Application Developme5151nt Framework
(ADF), and the BPEL database adapter. In this interview
Dennis Leung, vice president of development for Oracle
TopLink, talks with JDJ about persistence, O/R mapping,
EJB 3.0, Web services, SOA, and more.

Since Oracle acquired TopLink, its profi le has diminished
and it seems to been have sucked into a black hole.
What happened? Is there a future for TopLink at Oracle?
 I certainly don’t think it has been sucked into a black
hole! What has happened is that we’ve gone from being the
primary product of a small company to a very large com-
pany with a broad, rich portfolio of products. It’s been a
successful transition into Oracle, and the global resources
at our disposal have allowed us to reach more customers
than ever. We are still very much committed to the TopLink
product. The future is bright for TopLink as we bring the
results of our recent efforts to market. Oracle, with its
leadership in relational database technology and its com-
mitment to J2EE, is an ideal home for TopLink.
 It’s also been good for our customers. Even with our 10-
year track record we faced the scrutiny all small companies
face. Enterprise customers need to know you have long-
term viability, especially if they are going to use you as a
key component in their application. Being part of Oracle
removes that concern.

As you say, TopLink is celebrating its 10-year anniversary
and that’s unusual for a software product. You’ve been
involved with TopLink since its inception, during which
time the software development landscape has changed
tremendously – to what do you attribute the longevity of
TopLink?
 I can think of a few reasons, but the primary one is that
we’ve listened to our customers and have addressed their

requirements that are coming from real projects. A great
ORM product is not something a group of people can sit in
a room and plan out. You have to live through the demands
of real projects hitting diffi cult challenges. TopLink is a
10-year refl ection of having thousands of customers’ ex-
perience building enterprise applications for a wide cross
section of industries.
 In our rapidly evolving and highly competitive indus-
try, to survive this long a company needs to provide value
to customers and continue to provide value over the
years. We’ve been able to foresee and adapt to changes in
technology. We started in Smalltalk, moved to Java, gone
from client/server to server-side J2EE/EJB, and are already
receiving good feedback on our Web services and SOA ef-
forts.
 Finally, the core team has remained together. Most of
the TopLink team has been here for fi ve to seven years.
We’ve been fortunate to have added some really talented
developers over the past few years as well. This continuity
balanced with the infl ux of new ideas has served us well.

How about the longevity of Dennis Leung? ;-)
Is Oracle still a stimulating company to work for?
 As with any new situation, there’s a certain degree of
apprehension and uncertainty. This was certainly true for
me personally as I had not worked for a large company
like Oracle for about eight years. I can unequivocally say
after two and a half years, I really enjoy working here. I’ve
learned a great deal as the mandate for my group is much
broader with involvement in areas such as BPEL, Web
services, Oracle JDeveloper, ADF, SOA, and JAXB.
 Since day one, my management chain has been very
supportive of our group and our responsibilities have
increased. For example, the Oracle representatives on EJB
3.0 and JAXB 2.0 are from the TopLink team and we’ve put
a considerable amount of work into those JSRs. Oracle
is a serious player in the Java universe and that provides
tremendous opportunities and interesting challenges.

What is the biggest misconception about
persistence products?
 Over the years the developer community has become
more familiar with the problems persistence products ad-
dress; however, there still are a number of misconceptions.

Jeremy Geelan is

group publisher of

SYS-CON Media, and

is responsible for the

development of new titles and

technology portals for the

fi rm. He regularly represents

SYS-CON at conferences and

trade shows, speaking to

technology audiences both in

North America

and overseas.

jeremy@sys-con.com

Interview by Jeremy Geelan

F

Providing a Complete
Data Services Layer
Exclusive JDJ Interview with Dennis Leung,
Vice President of Oracle Application Server, TopLink Development

Feature

51December 2004www.SYS-CON.com/JDJ

 The difficulty of the fundamental O/R problem that is
being addressed is often underestimated and developers
don’t think they need a persistence solution. On the surface
it seems easy: hand code some SQL, do a bit of data conver-
sion, build some objects – no problem. However, it quickly
grows into a very complex problem as you try to address
issues such as inheritance, caching, querying, concurrency,
advanced database features, and clustering. This is when
the developer realizes that a persistence solution is needed.
 Also, because the only visible part of a persistence prod-
uct is the GUI tool, many people think it’s just a design-
time tool, when in fact it has a considerable presence at
runtime.
 Other big misconceptions are that persistence products
can’t handle difficult problems – the SQL generated is inef-
ficient and hand-coded JDBC will run faster. Over the years
we have proven time and again that this is not true.

From your many years of experience, what are the most
challenging problems your customers experience when
building applications using O/R mapping technology?
 The first challenge that customers face is with their
development processes and corporate culture. A lot of
projects don’t facilitate enough communication between
software development and the database management. In
some cases, these responsibilities are spread across differ-
ent sites. Without good communication and mutual respect
for how Java applications are developed and how databases
are managed, the technical impact of impedance mismatch
is compounded.
 Technically speaking, the most challenging problems
usually revolve around performance. In a J2EE application,
normally the most expensive operation that can occur is a
call across the network to the database. You want to mini-
mize these calls and do them intelligently. This is where
using a proven solution is key because a persistence layer
needs to provide lots of flexibility on how to bring back data
depending on the volume and volatility of your data.
 Another challenging area is dealing with concurrency,
particularly in clustered applications. The goal is to provide
as close to “turn-key” clustering as possible. It should be
trivial to scale an application from two to four to many
more nodes. There is a lot to consider though – locking,
caching, and refreshing are just a few of the issues.

Does TopLink support multiple databases?
Is it as performant as you would ideally like?
 Yes, TopLink has always supported multiple databases.
This is also true for J2EE application servers. TopLink
runs on any J2EE-compliant application server. Since we
were acquired by Oracle, one of the misconceptions about
TopLink is that we would only work on the Oracle Java
stack. This is far from the truth. One of the fundamental
benefits of TopLink is flexibility, which includes running
on any app server and using any major relational database
vendor. In fact, our daily regression test suite runs TopLink

on Oracle OC4J, WebLogic, and WebSphere against Oracle,
DB2, Sybase, and SQL Server.
 Performance is something that we continually try to
improve. We have a lot of performance-related features in
TopLink but you can never allow yourself to become com-
placent in the area of performance.

Given that you are still around, do you consider the
product a success?
 I measure success based on whether organizations
choose TopLink and successfully build and deploy their
applications. Based on these criteria, TopLink is very
successful.

Looking at the competition, open source is growing in
popularity and mindshare; what impact has it had on
TopLink?
 We’ve always treated our competition with respect and
open source is no different. There have always been a fair
number of competitors in this space and this has provided
plenty of inspiration for us to continue to innovate and
evolve TopLink.
 The result of having many vendors and open source
products in this space is that the persistence market itself
has grown. I think more people are better educated about
this problem domain.
 We used to have to go into accounts and convince devel-
opers and management that O/R is a difficult problem and
they could actually save time and money by leveraging a
third-party product rather than building the infrastructure
themselves. We don’t need to do this as often anymore.
 A slightly related impact that open source has had is that
we’ve put more emphasis on clarifying the availability of
our products to developers. Like all Oracle development
products, free, full functionality, nonexpiring versions of
TopLink are available for download from our site. This isn’t
a new policy, but one we’ve been more explicit about.

How do you differentiate your offering from those of your
competitors? What are the best metrics for measuring the
relative effectiveness of different persistence solutions?
 TopLink’s differentiating factors revolve around the
richness of our feature set as a result of being in this space
for 10 years. TopLink is the only product to support POJOs
and CMP entity beans, allowing them to intermix as well.
This means our customers who are currently using either
POJOs or entity beans are well positioned to transition to
EJB 3.0. We have tremendous flexibility in providing options
for areas such as performance tuning, caching, querying,
concurrency, clustering, database features, and platform
support. Developer productivity is enhanced with powerful
GUI-based tools and the ability to choose the standalone
TopLink Workbench or fully integrated mapping functional-
ity in Oracle JDeveloper.
 On a broader scale we’ve grown from being a point
ORM solution to adding capabilities to support XML and EIS

Technically speaking, the most challenging problems
usually revolve around performance”“

www.SYS-CON.com/JDJ52 December 2004

data sources. We believe these are among the key features to
providing a complete data services layer that is required to
address the diverse needs of today’s enterprise applications.
 The best metrics are based on the actual requirements of a
particular application. Identify a difficult, deep vertical por-
tion of your application and see if the persistence solution
can address those needs. Can it effectively map the object
model? How easy is it to define queries? Can you leverage
the database features the DBA has utilized? Can it scale and
perform? TopLink has experienced the most success where
customers have had in-depth and challenging evaluation
criteria.
 I keep coming back to providing value for customers and
there are a number of dimensions in providing value. I’ve
talked about the obvious product ones, but being part of
a large established company like Oracle has allowed us to
offer value in ways we couldn’t before.
 The number one factor is the peace of mind that accompa-
nies company viability. Another aspect of this is that we have
the ability to extend support for older versions of TopLink
that in the past we would have long discontinued. We can
service our customers much better with 24x7 technical sup-
port, global consulting, and local account teams; our runtime
exceptions are translated into 22 languages – all the benefits
you would expect from a software company the size of Oracle.

There has been a lot of controversy and debate in regards
to standards in the O/R space with JDO and EJB 3.0.
What is Oracle’s position on these standards?
 We are fully behind the EJB 3.0 specification and our ex-
pert group representative, Michael Keith, has played a pri-

mary leadership role on that committee. The recent move
of having a group of JDO experts join the EJB committee
is a positive step and clearly provides industry support for
O/R mapping in Java to be standardized with the EJB 3.0
specification.
 The feedback from the early drafts of the EJB 3.0 speci-
fication has been great. The POJO-based lightweight per-
sistence model is one that we’ve endorsed for a long time
and, with our support for both EJB 2.1 and POJO, TopLink
customers are well positioned to transition to EJB 3.0.

Oracle, BEA, and IBM are all strongly committed to Web
services and SOA. Where do you see TopLink’s technology
fitting in this picture?
 We’ve leveraged core TopLink technology to address the
unique requirements such as XML binding that materialize
with Web services and SOA applications. XML is a versatile
data exchange format, but it’s not the ideal structure from a
programmatic perspective.
 TopLink’s object–XML capabilities bring similar levels of
flexibility and control developers have come to expect from

our O/R solution to XML data sources. It’s JAXB compli-
ant, but goes beyond the spec to provide developers with
complete control of how an object model is mapped to an
XML Schema. Unlike basic JAXB, you aren’t forced to use the
object model that is generated.
 We’ve also used TopLink to build a database adapter that
allows BPEL engines to easily define and utilize database
functions as part of a business process.
 Both of these are examples of how TopLink is evolving
beyond a point ORM solution to provide a broader set of
persistence capabilities for diverse applications accessing a
variety of data sources.

How does Microsoft’s offering in the ORM space compare
to what J2EE offers.
 The difference is night and day. Even though J2EE and
.NET face the same challenges of O/R mapping, Microsoft
has no solutions available.
 Back in 2001, Microsoft previewed something called
ObjectSpaces, which is essentially their ORM solution. It still
hasn’t been released and I believe it has even been deferred
from the delayed Longhorn release, so who knows when it
will actually be in production. Even though ObjectSpaces is
taking a long time to come to market, its very presence has
limited the third-party market as Microsoft has indicated it
will eventually be available.
 This is a concrete example of how .NET is not ready for
“Enterprise-level prime time.” Yes, I’ll be the first to admit
that not all apps need an ORM solution, but a great number
of enterprise apps do and. NET offers very little for those
apps.

What does 2005 hold in store, in your view?
Will ORM be even more critical to building manageable
applications? Will the rise of “API-agnostic” O/R
mapping continue?
 For the foreseeable future, object-oriented technology
and relational databases will be fundamental parts of IT
solutions, so I think ORM solutions will continue to play
a critical role. EJB 3.0 will solidify in 2005 and, with the
improvements it brings, I think the industry will converge
on that standard.
 As Java and J2EE become more commonplace in IT,
the scope of a persistence product must grow beyond
ORM to address all the needs of a true enterprise, which
include the integration with disparate data sources. This
is where I see the future of persistence solutions moving.
In addition to O/R mapping, they need to also provide ser-
vices such as O-XML mapping, data access for BPEL, data
binding for Web services, distributed cache management,
integration with legacy systems, and event data manage-
ment. All in all, it’s an exciting time to be in the persistence
space.

Feature

XML is a versatile data exchange format, but it’s not the
ideal structure from a programmatic perspective”“

www.SYS-CON.com/JDJ54 December 2004

Virtual Machines

evelopers using Java on clients or
in small projects may not believe
that there is a fundamental
problem with Java’s robustness.

People working with huge applications
and application servers written in Java
know about the problem but may doubt
that it’s possible to build something like an
unbreakable Java architecture. Some may
even remember the White Star Line prom-
ising that their ocean liner Titanic was
unsinkable; an iceberg in the North Atlan-
tic proved them wrong and demonstrated
that there is no such thing as an unsinkable
ship. Is it really possible to build a Java ap-
plication server that never goes down?

It’s All About Isolation
 The key to understanding robust Java is
isolation, isolation, and isolation. Robust
applications, especially robust application
servers, require a high level of isolation
between users. It’s not acceptable that an
error occurring while processing one user’s
request may affect all users connected to
the system. The complexity of software
systems makes it impossible to develop
software that is completely free of errors, so
errors will always happen. Only isolation
can provide real robustness by limiting the
impact of errors.
 The design of the Java Virtual Machine
ignores the painful lessons operating
system vendors have learned in the past
40 years. The concepts of processes, virtual
memory management, and different pro-
tection modes for kernel and user code can
be found in all modern operating systems.
They focus on the question of isolation and
therefore robustness: an application with
errors cannot affect the other applications
running in the system.
 In contrast, Java follows the all-in-one-
VM paradigm: everything is processed
inside one virtual machine running in one
operating system process. Inside the VM,
parallelism is implemented using threads
with no separation regarding memory or
other resources. In this respect Java has
not changed since its invention in the
early nineties. The fact that Java was origi-
nally invented as a programming language

for embedded devices may explain this
approach.

There Is No Isolation in Java
 Java does not have a problem with
isolation; there is virtually no isolation at
all. Java tries to avoid dangerous concepts
like manual memory management (this
is like taking some of the icebergs out of
the ocean) and it can’t be denied that it
provides at least some isolation concepts,
but a Java Virtual Machine is still easy to
break. For example, class loaders make it
possible to partition an application into
parts that cannot see and access each
other directly, which provides some isola-
tion. Going back to our nautical example
from the very beginning, this is exactly
what was supposed to make the Titanic
unsinkable: the ship consisted of separate
compartments and water pouring into the
ship was supposed to be stopped by the
bulkheads separating the compartments
– unfortunately the iceberg was too big
and way too many compartments filled

up with water. In terms less familiar to the
sailor but more familiar to the developer:
all the fancy isolation built with class
loaders does not help if you have memory
leaks, threads running amok, or even bugs
in the VM.

SAP’s Approach to Isolation
 SAP’s ABAP application server – the
powerhouse underlying enterprise-scale
R/3 business solutions – was based on the
concept of process isolation from the very
beginning. It consists of a dispatcher and
a bunch of work processes handling the
requests. The work processes are normal
operating system (OS) processes and the
OS provides a high level of isolation for
free. The dispatcher guarantees that in one
moment exactly one user request is pro-
cessed by each work process. In case of a
crash, only the user currently processed in
the crashing process is affected. All other
users continue their work and the operat-
ing system takes care of the resource
cleanup.

by Thomas SmitsUnbreakable Java

D

Thomas Smits has a degree

in business administration

and economics with a focus

on business information

 technology. His first contact

with Java was 8 years

ago. Since then, he's been

eating, sleeping, and drinking

Java. He did development

projects for German Rail (Die

Bahn), Brenntag, and other

companies. Thomas authored a

course on Java Web technology

for Sun Microsystems and has

done a lot of customer-specific

 training on Java. Since 2002

he is a development architect

in the SAP NetWeaver team.

thomas.smits@sap.com

A Java server that never goes down

 Figure 1 Virtual machines

Memory Memory

VM 2VM 1

Current Practice Always on Java

VM 1..10

= Inactive User = Active User

In current designs, a high number of users share one virtual machine;
problems will affect all users. In the always on architecture, the number of
users per VM is reduced and inactive user sessions are kept outside the VMs.

 The technology behind the Always On Java initiative is called VM Container and the name suggests

that there is something like a virtual machine and a container housing it. Right!

 The name is based on the fact that the ABAP application server already contains a lot of interesting

and battle-tested services that can be reused to build a robust Java server. The components were re-

shaped and now provide the container that hosts the Java Virtual Machine. The VM was licensed by SAP

and modified to seamlessly integrate into the container and to provide additional features like sharing

technologies and enhanced supportability.

Why Is It Called VM Container?

55December 2004www.SYS-CON.com/JDJ

 To overstress the ocean liner example a
little: the ship is not split up into compart-
ments but every passenger gets its own ship
(a separated process) with some guide (the
dispatcher) taking care that all sail the same
course and don’t hit each other. Using this
architecture, an iceberg (a severe error) may
still hit one of the ships but it will affect only
one passenger.
 One passenger per ship sounds weird.
Giving each passenger his or her own private
dining room and engines seems to be a
huge waste of resources. Two things can be
done to handle the resource issue. First, it is
possible to let the passengers share the ship
with some others without meeting them at
any time. Some invisible mechanism moves
the sleeping passenger out of the ship, stor-
ing him or her somewhere outside and puts
another active passenger into it, taking care
that only one active passenger is in each ship
at any moment. The second way to address
the resource problem is to share as many re-
sources as possible between the little ocean
liners.
 In the ABAP application server, the state
of the user – often called user context – is
not stored inside the process but in a shared
memory area accessible to all work pro-
cesses. This allows attaching the user context
to a free work process when the next request
arrives. Attaching user contexts is a very fast
operation because no data is copied.
 The ABAP virtual machine (yes, ABAP
is executed on a virtual machine) was de-
signed from the very beginning to store user
contexts in shared memory. All infrastruc-
ture (the engines, the dining room) is written
in C and able to deal with user contexts
being moved between the work processes
too.

User Isolation in Java
 SAP’s VM Container technology transfers
the ABAP isolation concepts to the Java
arena. The first step is to increase the num-
ber of virtual machines and therefore reduce
the number of users handled by each VM.
Having a hundred instead of a thousand
users assigned to a VM makes a difference
in case of a crash, but still affects too many
users. Decreasing the number of affected us-
ers further without increasing the number of
virtual machines requires some extra magic.
 Normally less than 10 percent of the users
connected to a system are actively sending
requests; the others are thinking about
their next action or typing in some data at
the front end (thinking users). Keeping the
user state (user session in Java terms) in a
memory area outside the virtual machine al-
lows reestablishing the sessions of all think-
ing users in case of a crash. This reduces the

number of affected users in our example to
only 10 or one percent of the thousand users
(see Figure 1).
 The technology used to keep the sessions
outside the virtual machine is called Shared
Closures (see sidebar for details). The session
state of a user is saved to shared memory
after his or her request was processed.
This guarantees that the shared memory
contains a backup of the session state of at
least all thinking users and that the data is
accessible to all virtual machines. In case of a
crash, another virtual machine can copy the
user state from shared memory to its local
memory and continue processing the user’s
requests without the user even noticing.

Memory Diet for the VM
 The drawback of the described approach
is that you have more virtual machines,
each of them eating up some memory. This
requires extra measures to keep the memory
footprint of the VMs low; they must be put
on a diet. This problem is addressed by
Shared Classes.
 The memory consumed by Java classes
can become quite large in real-world appli-
cations. Shared Classes is a technology built
into the Java Virtual Machine that shares
the runtime representation of the classes,
including the native code generated by the
JIT compiler, across all virtual machines on
one physical box. The classes exist only once
in memory, reducing the overall memory
consumption of the VMs.
 In addition to the session backup
explained earlier, Shared Closures can be
utilized to reduce the memory footprint of
a virtual machine. Configuration data and
other application or server-wide informa-
tion can be shared between VMs. Mapping
the data from shared memory will provide
access to it without consuming memory in
each VM.

Don’t Forget Supportability
 Providing a high level of robustness
through isolation is half the battle, but
robustness without supportability is not suf-
ficient. If something goes wrong in the ap-
plication server, support personnel must be
able to track down and resolve the problem
easily.
 The virtual machine used in the VM Con-
tainer has been improved regarding sup-
portability. One of the most interesting fea-
tures is the ability to switch dynamically into
debugging mode and vice versa. The switch
can be initiated from the inside (using Java
code) or from the outside (using administra-
tive tools). Normally, Java application servers
need dedicated debugging nodes because
the Java virtual machine must be switched

 One of the key features of the VM Container technology is the Shared

Closures API. It provides a semantic similar to serialization but with a new

and very fast implementation. This technology enables middleware devel-

opers to share Java objects between virtual machines running on the same

computer. For the application developer, high-level APIs based on Shared

Closures are available, for example, providing caching or configuration

management.

 The name Shared Closures already implies that not only single

objects but the whole transitive closure of objects reachable from one

root object is shared. This behavior is like Java serialization except the

operations are faster and a special mode of operation, called mapping,

is supported.

 A Shared Closure is created or updated by providing a reference to

the root of an object tree to the API. The content of the tree is copied to

the shared memory while the objects inside the virtual machine remain

unchanged.

 An exiting Shared Closure can be used in two different ways:

• Copy: The objects in the Shared Closure are copied to the heap of

another VM. The objects become normal local objects and can be modi-

fied (see Figure 2).

• Map: The objects in the Shared Closure are not copied but only mapped

into the address space of the virtual machine (see Figure 3). This opera-

tion is very fast in comparison to copy, because no data is transferred.

Especially no extra memory is consumed for the mapped objects. The

objects mapped into the address space are read-only.

 An implicit versioning mechanism takes care of the fact that some VMs

may have mapped a version of a Shared Closure when another VM wants

to publish an update. All previously mapped closures remain unchanged,

whereas new map requests provide the new version. A distributed garbage

collector removes all old versions that are no longer used.

 Mapping objects from Shared Closures is the best mode of operation

for caches and configuration data that rarely changes. Copying the data

of a Shared Closure is used to implement session failover or messaging

mechanisms.

Shared Closures

1

MyClosure [1]

Virtual Machine 1 Virtual Machine 2

2
Shared Memory

Figure 2: Create and copy of a Shared Cluster

MyClosure [1]

Virtual Machine 1 Virtual Machine 2

Shared Memory

Figure 3: Versioning and mapping of a Shared Closure

MyClosure [2]

MyClosure

www.SYS-CON.com/JDJ56 December 2004

into debugging mode at start-up. Using
the VM Container, debugging is possible
at any time, even in productive systems. A
sophisticated rights management restricts
which parts of an application or server a
developer can debug. This prevents misuse
of debugging capabilities in production
environments.
 Besides debugging, the monitoring
capabilities of the VM can be used to ob-
tain granular statistics about the running
server. The monitoring is built in a way that
does not affect the performance of the run-
ning application until explicitly switched
on.

Summary
 The VM Container technology offers
improved robustness through isolation.
The isolation is provided by reducing the
number of users handled in parallel in one
virtual machine. Saving the user’s session
state in a shared memory area improves
the failover characteristics of the applica-
tion server. Advanced sharing technology
helps to reduce the memory footprint of
the virtual machines. Improved monitor-
ing and debugging support makes it easy
to detect and fix problems at runtime.

References
• Tanenbaum, A. (2001). Modern

Operating Systems (2nd Edition).
Prentice Hall.

• Byous, J. “Java Technology: the Early
Years”: http://java.sun.com /fea-
tures/1998/05/birthday.html

• SAP Web Application Server
Components: http://help.sap.com

• Kuck, N., et.al “SAP VM Container: Using
Process Attachable Virtual Machines.”
Java Virtual Machine Research and
Technology Symposium, San Francisco,
August 2002.

• J2ME CDC HotSpot Implementation
Overview: http://java.sun.com/ prod-
ucts/cdc-hi/overview.html

Virtual Machines

 In the development labs at SAP, work is in progress on a solution that goes beyond the approach described in

this article: it merges the Java and the ABAP world. Both virtual machines run together in one work process and

full user isolation is provided for ABAP and Java programs: in one Java Virtual Machine, only one user request is

processed at a time.

 A new paradigm was implemented called Process Attachable Virtual Machines. It decouples the VM from the

process and makes it a lightweight memory image that can be moved between processes. Using VM templates,

new virtual machines for the pool can be created with nearly no runtime effort. VM templates are available that

contain a fully bootstrapped virtual machine, including the application server and the deployed applications.

Using VM templates offers a way to create new virtual machines for the pool instantaneously.

 The number of work processes can be configured in a way that guarantees that the working set of all

processes fits into the machine’s main memory (although the memory is usually too small to hold all VMs at

the same time). The number of virtual machines in the pool is normally higher, to take into account situations

where a virtual machine does blocking I/O or other operations that don’t use the CPU. In those cases, the VM is

temporarily detached to free the process for new requests.

 The operating system schedules preemptively between the processes but the virtual machines are moved

in and out of the processes on a semantic base (semantic scheduling). This dramatically reduces the problem

of thrashing because the working set is only changed after a user request is finished. Controlling the semantic

scheduling is easy because the VMs are not operating system processes but attached to processes and detached

on demand.

 The session state of the users is kept in a special shared memory area accessed via the Shared Closures

technology. The VM and the user session are separated after each request. Therefore the VMs can be used

independently of the user sessions; there are no sessions sticky to a special VM except in the moment when a

request is processed.

A Peek into the Labs: Full User Isolation

Client

WP WPWP
ABAP VM ABAP VM ABAP VM

JAVA VM

JAVA VM JAVA VM
Virtual Machine Pool

JAVA VM

JAVA VM

The virtual machine pool contains process attachable VMs that can
be assigned to work processes on demand.

ICM

Dispatcher

B2

JAVA VM JAVA VM
Virtual Machine Pool

JAVA VM

Client

WP WPWP
ABAP VM ABAP VM ABAP VM

JAVA VM

Session Store

JAVA VM

User sessions are kept in shared memory and copied to the virtual
machine before the request is processed and copied back after the
request is finished.

ICM

Dispatcher

B2

JAVA VM

User 6

User 2 User 3 User 5

User 1

User 4

 The virtual machine used for the VM Container

is based on a Sun CDC/Hotspot VM. It was origi-

nally designed for embedded devices, making

it very lightweight and easy to port to new plat-

forms. Having a VM with a low memory footprint

is important because the isolation approach of the

VM Container will increase the number of parallel

running VMs. You may imagine the VM Container

as a cluster of Palm Pilots if you like.

Virtual Machine

57December 2004www.SYS-CON.com/JDJ

 Indeed, Spring and Hibernate – the leading so-called “alternative”
frameworks – are challenging the J2EE programming model while
embracing the J2EE technology platform. This is a critical distinction.
With Spring particularly, you get the power and maturity of the J2EE
stack with a simplicity comparable to that of the .NET programming
model. And you get it all with less cost and considerably more busi-
ness leverage (choice).
 How is this possible? When you step back and look at J2EE, there
is a lot to it. J2EE consists of:
1. A standard set of enterprise services addressing typical infrastruc-

ture needs, including transaction management (JTA), dynamic user
content (servlets/JSP/JSF), database access (JDBC), service lookup
(JNDI), asynchronous messaging (JMS), management (JMX), and
remoting (RMI/Web services).

2. A standard programming model for tapping into the power of the
above services, gluing the individual pieces together into a consis-
tent software delivery platform.

 We love the enterprise services. Nobody can match the power
and maturity of the J2EE technology stack. However, today’s prag-
matic developer isn’t so keen on the EJB programming model that
builds on these services. It’s complex, invasive, dated, and overengi-
neered for most developer needs. It’s not consistent. I have to jump
through hoops just to run my business logic in different environ-
ments, for example. I incur the costs of JTA when all my applica-
tion needs is a single database. The list of unnecessary costs
goes on.
 Enter the “alternative” frameworks. Spring, in particular, has
given our community a framework that not only makes it easier to
tap into the power of J2EE, but captures best practices on what ser-
vices to use when given your business requirements. The result? More
developers, architects, and managers are getting smarter about the
infrastructure they need for the given job at hand. Developer produc-
tivity is up.
 For over a year I’ve personally leveraged the Spring Framework
as the base architecture for my development projects. I now treat
J2EE infrastructure as a separate concern, one fully decoupled from
the business logic (“core meat”) of my application. Spring gives me
the power to choose which deployment environment and technologies
are most appropriate given the complexity of the domain problem
at hand. That puts me in command – if all I need is a Web container
to power a Web app with a single data source, a solution like Tomcat is
the best cost. For middleware-intensive applications that require mes-
saging, global transactions, and remoting, a higher-end applica-
tion server is worth the investment. In all cases, my programming
model stays simple and consistent, grounded in my customer’s prob-
lem domain.
 I can’t say it enough, J2EE is better than ever – for the consumer.
I read success story after success story from developers working
on projects with products like Spring and Hibernate. They’re lever-
aging them in all kinds of environments and application servers to
support demands on all scales. Today is a great time to be develop-
ing enterprise applications in Java. It’s a great time to be a consumer.
We’ve got the technology, the platform, and the community – it’s only
going to get better. Who can stop us now?

Viewpoint
– continued from page 6

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess
of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject
to change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the
content of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the
discretion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred
positions” described in the rate table. Cancellations and changes to advertisements must be made in writing
before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

 Altova www.altova.com 978-816-1600 4

 Borland www.go.borland.com/j6 831-431-1000 9

 Business Objects www.businessobjects.com/dev/p7 888-333-6007 27

 Canoo Engineering AG www.canoo.com/ulc 49

 Common Controls www.common-controls.com +49 (0) 6151/13 6 31-0 35

 Dice www.dice.com 877-386-3323 29

 ESRI www.esri.com/develop 7

 EV1 Servers www.ev1servers.net 800-504-SURF 15

 Google www.google.com/cacm 650-623-4000 31

 ILOG jviews-info-kit.ilog.com 800-for-ILOG 17

 Information Storage & Security Journal www.issjournal.com 888-303-5282 61

 InstallShield www.installshield.com/jdj 800-809-5659 19

 IT Solutions Guide www.sys-con.com/itsolutions 888-303-5282 53

 M7 www.m7.com/d7.do 866-770-9770 41

 Microsoft msdn.microsoft.com/visual Cover II

 Mindreef www.mindreef.com +1 603 465-2204 43

 Northwoods Software Corp. www.nwoods.com/go 800-434-9820 37

 Oak Grove Systems www.oakgrovesystems.com 818-440-1234 45

 Parasoft Corporation www.parasoft.com/achievequality 888-305-0041 23

 Quest Software, Inc. http://www.quest.com/jdj 800-663-4723 Cover IV

 SAP www.sdn.sap.com 11

 Software FX www.softwarefx.com 800-392-4278 Cover III

 WebRenderer www.webrenderer.com 47

 Web Services Edge 2005 East www.sys-con.com/edge 201-802-3069 58-59

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

www.SYS-CON.com/JDJ60 December 2004

elcome to the December
edition of the JCP column!
Each month you can read
about the Java Commu-

nity Process: newly submitted JSRs,
new draft specs, Java APIs that were
finalized, and other news from the JCP.
This time around I’ll cover the recent
elections for the Executive Commit-
tees and four new J2ME-related JSRs.

The Envelope Please!
 During October and November the
annual elections for the two Executive
Committees take place. Each year the
elections are managed by PriceWater-
houseCoopers to ensure an impartial
execution of the proceedings.
 In October the JCP membership
ratified the nominations that Sun had
put forward, resulting in the appoint-
ments of Apache, Borland, and Nortel
to the SE/EE EC, and NTT DoCoMo,
RIM, and Samsung to the ME EC.
The main criteria that Sun uses in
selecting JCP members for nomina-
tion are concentrated on maintaining
(and sometimes improving) broad
market representation and geographic
diversity – a little more on that in a
moment.
 The second phase of the elections
is the open election on JCP members
who nominated themselves for the
open seats. This year for the ME EC
two places were available, and the
SE/EE EC had three available seats.
Out of 10 candidates the JCP mem-
bers voted to elect Google, JBoss, and
Intel to the SE/EE EC. From the seven
candidates for the ME EC, Intel and
Orange France won the election. Con-
gratulations to the winners, and for
the others hopefully better luck next
time.
 Together with the outcome of
the ratification vote, there are some

interesting new dynamics emerg-
ing. On the SE/EE EC there is better
representation for the JAIN and OSS/J
efforts in the JCP through the appoint-
ment of Nortel. I’m glad that Apache
accepted our invite to continue their
participation at this level in the JCP,
so that open source viewpoints are
present during our meetings. And with
the election of the JBoss Group there
will be additional perspective brought
in from this section of the community.
Then there is the relative newcomer
to the Java community in the form of
Google, albeit represented by a famil-
iar face in the person of a spec lead of
old, Josh Bloch (welcome back!). On
the ME EC there will be more balance
between manufacturers’ interests
and providers’ interests through the
appointments of NTT DoCoMo and
Orange France. I’m also pleased to see
an increased Asian presence on this
EC through Samsung as well as NTT
DoCoMo.
 The newly elected EC members
took office on Tuesday, November 30.

New Activities in the
J2ME Technology Space
 The J2ME technology section of
the JCP is busy and hard at work. The
four new JSRs that I’ll discuss in this
month’s column are all J2ME focused.
 JSR 256, Mobile Sensor API, was
submitted by Nokia and approved
by the ME EC. The JSR proposed to
build an optional package to com-
municate with and manage sensors
from the mobile device. There are
many different sensor types (heart rate
monitors, thermometers, cameras,
microphones, etc.) that may connect
to mobile devices using a variety of
protocols. This JSR plans to provide a
common approach to interacting with
sensors for CLDC 1.1-based devices.

 Nokia also submitted the proposal
for the Contactless Communication
API or JSR 257. Contactless com-
munication, both one-way and
bidirectional, may be based on RFID
(Radio Frequency Identification), NFC
(Near Field Communication), or bar
codes. These mechanisms are used
to exchange relatively small amounts
of data between devices, or transport
that data to a device from product
packaging, for example.
 The third new JSR, Mobile User
Interface Customization API or JSR
258, was also approved by the ME EC
but not until after the submittal of
various voting comments by the EC
members. The Spec Lead proposed
to define a generic approach for the
customization of a device’s user inter-
face, whether the interface is based
on LCDUI (MID-P), AGUI (JSR 209)
or AWT from Personal Profile (just
examples). One approach it will use
to achieve this is through the creation
of a common vocabulary where the
vocabulary maps to the customization
properties of the device’s user inter-
face.
 JSR 259, Ad Hoc Networking API,
was proposed by Siemens. This JSR
plans to specify an API that enables
communication between mobile
devices in a peer-to-peer networking
environment, and enabling these
devices to dynamically join ad hoc
networks. The JSR will provide fa-
cilities such as service discovery and
registration, and capability inquiry.
The API would give access to various
dynamic communications technolo-
gies, such as ZeroConf, UPnP, and
JXTA.
 That’s it for this month. I’m very
interested in your feedback. Please
e-mail me with your comments, ques-
tions, and suggestions.

JSR Watch

Onno Kluyt

From Within the
Java Community Process Program

W

Onno Kluyt is the

senior director and chair

of the JCP Program

Management Office,

Sun Microsystems.

onno@jcp.org

The votes are in

www.SYS-CON.com/JDJ62 December 2004

t’s no surprise that the common
perception is that Web applica-
tions are unreliable and problem-
atic. Users often experience “404,”

“resource unavailable,” and “network
unavailable” errors or even a mysteri-
ous application error telling them to
“retry the application later.” The truth
is, a fundamental source of all these
problems is the HTTP communication
layer of the Web.
 The Internet was initially designed
for presenting and sharing hyper-
linked documents in the form of Web
pages. Therefore, the communication
layer is based on the HTTP “Request/
Response” model, which adequately
serves the purpose of page brows-
ing. However, the Internet has since
evolved far beyond simply supporting
browsing activity and is now being
utilized as an interactive platform for
supporting mission-critical enterprise
applications. However, in this context,
there are still problematic Web brows-
ing assumptions made – especially
with regard to the messaging layer
– when it comes to Web application
development.
 First off, the Web’s messaging
layer does not support guaranteed
message delivery. When a user sub-
mits a request to the server, whether
this request will actually arrive at the
server or not is unpredictable. If there
is a network problem (either with the
ISP or within the corporate network),
there is a good chance the request
will be lost. However, this is not al-
ways a problem for Internet browsing,
as the user can always click the link
a second and third time if the first
URL request is lost. Although this
seems like a basic example, it’s a
serious problem for mission-critical
enterprise applications. The point
is, it’s not out of the realm of pos-
sibility that a multi-million dollar
transaction can literally be “riding
on the line.”

 Another factor to consider is that
the Web’s messaging layer does not
guarantee the order of message deliv-
ery. If the user submits two requests
in a row, there is no guarantee that the
first request will arrive at the server
before the second request. Again,
while this is not necessarily a problem
for browsing Web pages, the result
of a later request can be dependent
on an earlier request when using the
Internet for business applications. A
random ordering of message delivery
makes the application’s behavior un-
predictable – a pattern that many Web
application users are familiar with.

 Further, the Web’s messaging layer
does not support server-initiated or
server-push communications; it sup-
ports client-pull only. In a client-pull
only model, the server works like a
phone that never rings. Obviously this
is not a problem for browsing because
the server simply responds to page
requests. However, many enterprise
applications require the server to
initiate interactions. For example, a
stock trading application needs to
push the latest stock price from the
server to the end user. To side step
this problem, developers typically use
client polling, but this significantly
increases the server/network load
and therefore decreases application
performance.
 As discussed, when considering
developing and deploying Web appli-
cations, the messaging layer’s unreli-

ability and limited functionality are
fundamental problems that must be
seriously considered. A potential solu-
tion to the message reliability issue
is to implement message queuing on
both the client and server side. Thus,
if a message failed to be delivered due
to a temporary network problem, the
message can be retrieved from the
queue and re-sent once the network
is available. Message queues also help
guarantee the order of delivery. To
get around server-push limitations,
some developers leverage client-poll-
ing techniques. Although it is possible
to develop a solution in-house to
address some of these issues, the
technical challenge can be significant
and the cost to test and maintain the
solution can be high.
 An alternative approach is to inves-
tigate some commercially available
application platforms that have built-
in solutions to all these problems.
Some Rich Internet Application (RIA)
platform solutions now available
have a built-in capability for reliable
messaging and real-time server push.
Such solutions not only deliver a rich-
er application experience, but also
dramatically improve the application’s
robustness and reliability by provid-
ing a stronger communication layer
– a critical factor when considering
the Internet as a means of housing
enterprise-level applications.
 As the Web continues to become
more widely adopted as a mission-
critical enterprise application plat-
form, it’s even more imperative that
developers truly understand and take
into consideration its flawed com-
munication model. There are now RIA
solutions available to help developers
overcome these limitations. Other-
wise, traditional Web applications will
not only frustrate end users and IT
staff, they will also introduce signifi-
cant problems that disrupt everyday
operations.

@ the Backpage

by Coach K. Wei

Why Web Applications Can be
Problematic and Unreliable

I

Coach Wei, founder and

CTO of Nexaweb, combines

enterprise industry

experience with his education

and research experience at

MIT to provide the vision

for Nexaweb. He founded

Nexaweb in 2000 and served

as CEO until summer 2003.

Before founding Nexaweb,

Coach architected and

designed enterprise software

for managing storage networks

at EMC Corporation. Coach was

a finalist in the 1999 MIT $50K

entrepreneurship competition

and is the holder of several

U.S. Patents. He holds an MS

in Information Technology

from MIT.

coach@nexaweb.com

63

SPEND LESS TIME PROBLEM SOLVING… AND MORE TIME DEVELOPING APPLICATIONS.

Join The Thousands of Companies Improving Java Application

Performance with Quest Software.

Whether it’s a memory leak or other performance issues,

Quest Software’s award-winning Java products — including

JProbe® and PerformaSure™ — help you spend less time trouble-

shooting and more time on the things that matter. Quest’s Java

tools will identify and diagnose a problem all the way down to

the line of code, so you no longer have to waste time pointing

fingers or guessing where the problem lies. Maximize your

team’s productivity with Quest Software by downloading a free

eval today from http://www.quest.com/jdj.

PerformaSure — a system-wide performance
diagnostic tool for multi-tiered J2EE applications
running in test or production environments.

JProbe — a performance tuning toolkit
for Java developers.

© 2004 Quest Software Inc., Irvine, CA 92618 Tel: 949.754.8000 Fax: 949.754.8999

